山东省工程建设标准 DB

DB37/T 5097 — 2020

J xxxxx-2020

绿色建筑评价标准

Assessment standard for green building

(征求意见稿)

2020-xx-x 发布

2020-xx-xx 实施

山东省住房和城乡建设厅 山东省市场监督管理局

联合发布

前 言

按照山东省住房和城乡建设厅、山东省市场监督管理局《关于印发<2019 年山东省工程建设标准制修订计划>的通知》(鲁建标字〔2019〕11 号)的要求,编制组依据国家和行业相关标准,经深入调查研究和广泛征求意见,参考国内研究成果并结合山东地区的气候条件、地域特点与经济社会发展状况,对山东省工程建设标准《绿色建筑评价标准》DB37/T 5097-2017 进行了全面修订。

本标准的主要技术内容是: 1. 总则; 2. 术语; 3. 基本规定; 4. 安全耐久; 5. 健康舒适; 6. 生活便利; 7. 资源节约; 8. 环境宜居; 9. 提高与创新。

本标准修订的主要技术内容是: 1. 重新构建了绿色建筑评价技术指标体系; 2. 调整了绿色建筑的评价时间节点; 3. 增加了绿色建筑等级; 4. 拓展了绿色建筑内涵; 5. 提高了绿色建筑性能要求。

本标准由山东省住房和城乡建设厅负责管理,由山东省建筑科学研究院有限公司负责具体技术内容解释。执行过程中如有意见或建议,请寄送山东省建筑科学研究院有限公司(地址:济南市天桥区无影山路 29 号,邮政编码: 250031,电话: 0531-85595189,E-mail: sds_gb@163.com)。

本 标 准 主 编 单 位: 山东省建筑科学研究院有限公司 山东省城乡规划设计研究院

本标准参编单位: 山东省建筑设计研究院有限公司 同圆设计集团有限公司 中建八局第一建设有限公司 山东产发低碳环保科技有限公司 北京构力科技有限公司 东营市建筑设计研究院 北京绿建软件股份有限公司

本标准主要起草人员: 王 昭 唐建平 于晓明 李 迪 王春堂 王 昶 殷晓梅 张 钊 李向前 王衍争 李 震 尹子和 蒋 波 徐承强 孙秀萍 李 恒 王 霆 王 琦 刘 静 邹积军

济南沈博工程技术有限公司

常维峰 宋文寅 张桂青 陈德刚 李永安 田 帅 李昊翼 周淑颖 李青灿 吉 新字 海滨 杨曙光 洒 立 马鹏真 颜承宇于 科 钟 杰 季旺然 李军伟 李天勋李鑫祥 郭柱道 邓祥文 李 健 郝璐楠 新 余祖斌 惠畦国 于保清 孙璐楠 郑海华 丁 霞 刘 瑞 张继军 朱 航 孙 波 吕玉香 魏林滨 魏占山

本标准主要审查人员:

目次

1	总则	•••••••••••••••••••••••••••••••••••••••	1
2	术语	•••••••••••••••••••••••••••••••••••••••	4
3	基本	规定	5
	3.1	一般规定	5
	3.2	评价与等级划分	8
4	安全	耐久	15
	4.1	控制项	15
	4.2	评分项	21
	I	安全	21
	II	耐久	25
5	健康	舒适	32
	5.1	控制项	32
	5.2	评分项	38
	I	室内空气品质	38
	II	水质	40
	III	室内声环境	43
	IV	室内光环境	44
	V	室内热湿环境	46
6	生活	便利	50
		控制项	
	6.2	评分项	53
	I	出行与无障碍	
	II	服务设施	54
	III	智慧运行	57
	IV	物业管理	60
7	资源	节约	65
	7.1	控制项	65
		评分项	
	I	节地与土地利用	71
	II	节能与能源利用	74
	III	节水与水资源利用	83
	IV	节材与绿色建材	88
8	环境	宜居	94
	8.1	控制项	94
		评分项	
	I	场地生态与景观	
	II	室外物理环境	
9	提高	与创新	110

9.2	一般规定加分项	110
II	创新	118
	建筑能源利用效率核査表 用词说明	
	性名录	

Contents

1 Gene	eral Provisions	1
2 Tern	ns	4
3 Basic	c Requirements	5
3.1	General Requirements	5
3.2	Assessment and Rating	8
4 Safet	ty and Durability	15
4.1	Prerequisite Items	15
4.2	Scoring Items	21
I	Safety	21
II	Durability	25
5 Heal	th and Comfort	32
5.1	Prerequisite Items	32
5.2	Scoring Items	37
I	Indoor Air Quality	38
II	Water Quality	40
III	Indoor Sound Environment	42
IV	Indoor Daylighting Environment	
V	Indoor Thermal Environment	45
6 Occu	pant Convenience	50
6.1	Prerequisite Items.	50
6.2	Scoring Items	53
I	Transit and Accessibility	53
II	Service Facility	54
III	Intelligent Operation	57
IV	Property Management	60
7 Reso	urces Saving	65
7.1	Prerequisite Items	65
7.2	Scoring Items	71
I	Land Saving and Land Utilization	71
II	Energy Saving and Energy Resources Utilization	74
III	Water Saving and Water Resource Utilization	83
IV	Material Saving and Green Materials	88
8 Envi	ronment Livability	94
8.1	Prerequisite Items.	94
	Scoring Items	
I	Site Ecology and Landscape	
II	Outdoor Physical Environment	
9 Pron	notion and Innovation	110
	General Requirements	

9.2	Bonus Items	110
I	Performance Promotion	110
II	Innovation	118
Appen	123	
Explan	125	
List of	Quoted Standards	126

1 总则

1.0.1 为贯彻落实绿色发展理念和《山东省绿色建筑促进办法》,推进绿色建筑高质量发展,节约资源,保护环境,满足人民日益增长的美好生活需要,指导和规范山东省绿色建筑的评价,制定本标准。

[条文说明]1.0.1 我国绿色建筑实践工作稳步推进、绿色建筑发展效益明显,从国家到地方、从政府到公众,全社会对绿色建筑的理念、认识和需求逐步提高,绿色建筑蓬勃开展。《住房城乡建设事业"十三五"规划纲要》不仅提出到 2020 年城镇新建建筑中绿色建筑推广比例超过 50%的目标,还部署了进一步推进绿色建筑发展的重点任务和重大举措。2019 年 10 月 29 日,国家发展改革委印发实施《绿色生活创建行动总体方案》(发改环资〔2019〕1696 号)。该方案提出:"到 2022 年,城镇新建建筑中绿色建筑面积占比达到 60%,既有建筑绿色改造取得积极成效"。

我省绿色建筑历经十余年的发展,已实现从无到有、从少到多、从个别城市到全省范围,从单体到生态城区、城镇规模化的发展,已全面强制执行绿色建筑标准。2019年3月1日起施行的《山东省绿色建筑促进办法》(省政府令第323号)规定:"城市、县城、镇总体规划确定的城镇建设用地范围内新建民用建筑(3层以下居住建筑除外)的规划、设计、建设,应当采用国家和省规定的绿色建筑标准。其中,政府投资或者以政府投资为主的公共建筑以及其他大型公共建筑,应当按照二星级以上绿色建筑标准进行建设"。我省首部《绿色建筑评价标准》DBJ/T 14-082-2012发布实施至今,期间经历一次修订(《绿色建筑评价标准》DB37/T 5097-2017,以下简称"本标准 2017 年版"),对评估建筑绿色程度、保障绿色建筑质量、规范和引导我省绿色建筑健康发展发挥了重要的作用。

然而,随着我省生态文明建设和建筑科技的快速发展,绿色建筑在实施和发展过程中遇到了新的问题、机遇和挑战。建筑科技发展迅速,装配式建筑、海绵城市、建筑信息模型、绿色施工、智能建筑、智慧住区、智慧建造等新技术和新理念不断涌现并投入应用,而这些新领域方向和新技术发展并未在本标准 2017 年版中充分体现。党的"十九大"报告指出,中国特色社会主义进入新时代,我国社会主要矛盾已经转化为人民日益增长的美好生活需要和不平衡不充分的发展之间的矛盾;增进民生福祉是发展的根本目的,要坚持以人民为中心,坚持在发展中保障和改善民生,不断满足人民日益增长的美好生

活需要,使人民获得感、幸福感、安全感更加充实;提出推进绿色发展,建立健全绿色低碳循环发展的经济体系,构建市场导向的绿色技术创新体系,推进资源全面节约和循环利用,实施国家节水行动,降低能耗、物耗,实现生产系统和生活系统循环链接,倡导简约适度、绿色低碳的生活方式,开展创建节约型机关、绿色家庭、绿色学校、绿色社区和绿色出行等行动。

综上,本标准2017年版已不能适应我省绿色建筑发展及评价工作的需要。贯彻落实《山东省绿色建筑促进办法》,为全面推动我省绿色建筑高质量发展,提高新时代绿色建筑建设技术水平,根据山东省住房和城乡建设厅的要求,由山东省建筑科学研究院有限公司和山东省城乡规划设计研究院会同有关单位对本标准2017年版进行修订。

1.0.2 本标准适用于山东省民用建筑绿色性能的评价。

[条文说明]1.0.2 本条规定了标准的适用范围,即本标准适用于山东省各类民用建筑绿色性能的评价,包括公共建筑和住宅建筑。

1.0.3 绿色建筑评价应遵循因地制宜的原则,结合建筑所在地域的气候、环境、资源、经济和文化等特点,对建筑全寿命期内的安全耐久、健康舒适、生活便利、资源节约、环境宜居等性能进行综合评价。

[条文说明]1.0.3 我省各地区在气候、环境、资源、经济发展水平与民俗文化等方面都存在一定差异,而因地制宜又是绿色建筑建设的基本原则,因此对绿色建筑的评价,也应综合考量建筑所在地域的气候、环境、资源、经济和文化等条件和特点。建筑物从规划设计到施工,再到运行使用及最终的拆除,构成一个全寿命期。本次修订,以"四节一环保"为基本约束,以"以人为本"为核心要求,对建筑的安全耐久、健康舒适、生活便利、资源节约、环境宜居等方面的性能进行综合评价。

1.0.4 绿色建筑应结合地形地貌进行场地设计与建筑布局,且建筑布局应与场地的气候条件和地理环境相适应,并应对场地的风环境、光环境、热环境、声环境等加以组织和利用。

[条文说明]1.0.4 绿色建筑充分利用场地原有的自然要素,能够减少开发建设对场地及周边生态系统的改变。从适应场地条件和气候特征入手,优化建筑布局,有利于创造积极的室外环境。对场地风环境、光环境的组织和利用,可以改善建筑的自然通风和日照条件,提高场地舒适度;对场地热环境的组织,可以降低热岛强度;对场地声环境的组织,可以降低建筑室内外噪声。

1.0.5 绿色建筑的评价除应符合本标准的规定外,尚应符合国家及山东省现行有 关标准的规定。

[条文说明]1.0.5 符合国家及山东省法律法规和有关标准是参与绿色建筑评价的前提条件。本标准重点在于对建筑绿色性能进行评价,并未涵盖通常建筑物所应有的全部功能和性能要求,故参与评价的建筑尚应符合国家及山东省现行有关标准的规定。限于篇幅,本条文说明不能逐一列出有关标准,仅列出部分标准,如:现行国家标准《城市居住区规划设计标准》GB 50180、《民用建筑设计统一标准》GB 50352、《建筑结构可靠性设计统一标准》GB 50068、《混凝土结构设计规范》GB 50010、《钢结构设计标准》GB 50017、《建筑设计防火规范》GB 50016、《建筑抗震设计规范》GB 50011、《建筑物防雷设计规范》GB 50057、《民用建筑供暖通风与空气调节设计规范》GB 50736、《民用建筑 热工设计规范》GB 50176、《建筑给水排水设计规范》GB 50015、《民用建筑隔声设计规范》GB 50118、《建筑采光设计标准》GB 50033、《建筑照明设计标准》GB 50034、现行行业标准《民用建筑电气设计规范》JGJ 16 以及现行山东省地方标准《公共建筑节能设计标准》DB37/5155、《居住建筑节能设计标准》DB37/5026、《民用建筑外窗工程技术规范》DB37/T 5016、《绿色建筑设计规范》DB37/T 5043、《被动式超低能耗居住建筑节能设计标准》DB37/T 5016、《建筑与市政工程绿色施工管理标准》DB37/T 5086、《建筑与市政工程绿色施工管理标准》DB37/T 5086、《建筑与市政工程绿色施工管理标准》DB37/T 5086、《建筑与市政工程绿色施工评价标准》DB37/T 5087等。

2 术语

2.0.1 绿色建筑 green building

在全寿命期内,节约资源、保护环境、减少污染,为人们提供健康、适用、高效的使用空间,最大限度地实现人与自然和谐共生的高质量建筑。

2.0.2 绿色性能 green performance

涉及建筑安全耐久、健康舒适、生活便利、资源节约(节地、节能、节水、 节材)和环境宜居等方面的综合性能。

2.0.3 全装修 decorated

在交付前,住宅建筑内部墙面、顶面、地面全部铺贴、粉刷完成,门窗、固定家具、设备管线、开关插座及厨房、卫生间固定设施安装到位;公共建筑公共区域的固定面全部铺贴、粉刷完成,水、暖、电、通风等基本设备全部安装到位。

2.0.4 建筑墙体保温与结构一体化 integration of wall thermal insulation and building structure

集建筑保温与墙体围护功能于一体,能够实现墙体保温层与建筑结构同步施 工完成的构造技术。

2.0.5 绿色建材 green building material

在全寿命期内可减少对资源的消耗、减轻对生态环境的影响,具有节能、减排、安全、健康、便利和可循环特征的建材产品。

2.0.6 热岛强度 heat island intensity

城市内一个区域的气温与郊区气温的差别,用二者代表性测点气温的差值表示,是城市热岛效应的表征参数。

2.0.7 绿色施工 green construction

在保证质量、安全等基本要求的前提下,通过科学管理和技术进步,最大限度地节约资源,减少对环境负面影响,实现环境保护、节材、节水、节能、节地、节约人力资源的施工活动。

2.0.8 建筑全寿命期成本分析 building life cycle cost analysis

在建筑的全寿命期内,从项目的构思、策划、土地获取、设计、建造、使用、维护、改扩建到拆除的整个寿命期生产者、消费者以及社会所发生的一切费用。

3 基本规定

3.1 一般规定

3.1.1 绿色建筑评价应以单栋建筑或建筑群为评价对象。评价对象应落实并深 化上位法定规划及相关专项规划提出的绿色发展要求;涉及系统性、整体性的指 标,应基于建筑所属工程项目的总体进行评价。

[条文说明]3.1.1 建筑和建筑群的规划建设应符合法定详细规划,并应满足绿色生态城市发展规划、绿色建筑建设规划、海绵城市建设规划等相关专项规划提出的绿色发展控制要求,深化、细化技术措施。

建筑单体和建筑群均可以参评绿色建筑,临时建筑不得参评。单栋建筑应为完整的建筑,不得从中剔除部分区域。

绿色建筑的评价,首先应基于评价对象的性能要求。当需要对某工程项目中的单栋 建筑或建筑群进行评价时,由于有些评价指标是针对该工程项目设定的,或该工程项目 中其他建筑也采用了相同的技术方案,难以仅基于该单栋建筑进行评价,此时,应以该 栋建筑所属工程项目的总体为基准进行评价。也就是说,评价内容涉及工程建设项目总 体要求时(如容积率、绿地率、年径流总量控制率等控制指标),应依据该项目的整体控 制指标,即所在地城乡规划行政主管部门核发的工程建设规划许可证及其设计条件提出 的控制要求,进行评价。

建筑群是指位置毗邻、功能相同、权属相同、技术体系相同(相近)的两个及以上单体建筑组成的群体。常见的建筑群有住宅建筑群、办公建筑群。当对建筑群进行评价时,可先用本标准评分项和加分项对各单体建筑进行评价,得到各单体建筑的总得分,再按各单体建筑的建筑面积进行加权计算得到建筑群的总得分,最后按建筑群的总得分确定建筑群的绿色建筑等级。

无论评价对象为单栋建筑还是建筑群, 计算系统性、整体性指标时, 边界应选取合理、口径一致, 一般以城市道路完整围合的最小用地面积为宜。如最小规模的城市居住区即城市道路围合的居住街坊(现行国家标准《城市居住区规划设计标准》GB50180 规定的居住街坊规模), 或城市道路围合、由公共建筑群构成的城市街坊。

对于建筑未交付使用时, 应坚持本条原则, 不对一栋建筑中的部分区域开展绿色建

筑评价。但建筑运行阶段,可能会存在两个或两个以上业主的多功能综合性建筑,此情况下可灵活处理,首先仍应考虑"以一栋完整的建筑为基本对象"的原则,鼓励其业主联合申请绿色建筑评价;如所有业主无法联合申请,但有业主有意愿单独申请时,可对建筑中的部分区域进行评价,但申请评价的区域,建筑面积应不少于2万 m²且有相对独立的暖通空调、给水排水等设备系统,此区域的电、气、热、水耗也能独立计量,还应明确物业产权和运行管理涵盖的区域,涉及的系统性、整体性指标,还应按照本条的规定执行。

3.1.2 绿色建筑评价应在建筑工程竣工验收后进行。在建筑工程施工图设计审查完成后,应进行预评价。

[条文说明]3.1.2 本次修订对绿色建筑评价阶段进行了重新要求。

住房城乡建设部《住房城乡建设事业"十三五"规划纲要》、《建筑节能与绿色建筑发展"十三五"规划》等国家政策明确提出全面推进绿色建筑发展。2016年山东省全面执行绿色建筑施工图设计文件审查。2019年3月1日起施行的《山东省绿色建筑促进办法》要求:城市、县城、镇总体规划确定的城镇建设用地范围内新建民用建筑(3层以下居住建筑除外)的规划、设计、建设,应当采用国家和省规定的绿色建筑标准。城镇新区应当按照绿色生态城区标准进行规划、建设,推动绿色建筑规模化、集约化发展。

我省绿色建筑呈现跨越式发展,绿色建筑由推荐性、引领性、示范性向强制性方向转变。据统计,截至 2019 年 12 月底,我省获得绿色建筑评价标识的项目累计 1280 个,建筑面积超过 1.64 亿 m²。但目前绿色建筑运行标识项目还相对较少,占标识项目总量的比例仅为 6%左右,而且随着近几年绿色建筑施工图设计文件审查工作的普遍开展,绿色建筑运行标识项目所占的比例则更低。

绿色建筑必然向注重运行实效方向发展。绿色建筑发展历经 10 余年,绿色建筑发展需要解决从高速发展到高质量发展的诉求,关键途径之一则是重新定位绿色建筑的评价阶段。本次修订决定将绿色建筑评价定位在建筑物建成后的性能,也就是说将绿色建筑的性能评价放在建设工程竣工验收后,这么做能够更加有效约束绿色建筑技术落地,保证绿色建筑性能的实现。本条提出"在建筑工程施工图设计审查完成后,应进行预评价",主要是出于两个方面的考虑:一方面,预评价能够更早地掌握建筑工程可能实现的绿色性能,可以及时优化或调整建筑方案或技术措施,为建成后的运行管理做准备;另一方面是作为设计评价的过渡,与我省现行的设计标识评价制度相衔接。

3.1.3 申请评价方应对参评建筑进行全寿命期技术和经济分析,选用适宜技术、设备和材料,对规划、设计、施工、运行阶段进行全过程控制,并应在评价时提交相应分析、测试报告和相关文件。申请评价方应对所提交资料的真实性和完整性负责。

[条文说明]3.1.3 本条对申请评价方的相关工作提出要求。申请评价方依据有关管理制度文件确定。绿色建筑注重全寿命期内资源节约与环境保护的性能,申请评价方应对建筑全寿命期内各个阶段进行控制,优化建筑技术、设备和材料选用,综合评估建筑规模、建筑技术与投资之间的总体平衡,并按本标准的要求提交相应分析、测试报告和相关文件,涉及计算和测试的结果,应明确计算方法和测试方法。申请评价方对所提交资料的真实性和完整性负责。

3.1.4 评价机构应对申请评价方提交的分析、测试报告和相关文件进行审查, 出具评价报告,确定等级。

[条文说明]3.1.4 本条对绿色建筑评价机构的相关工作提出要求。绿色建筑评价机构依据有关管理制度文件确定。绿色建筑评价机构应按照本标准的有关要求审查申请评价方提交的报告、文档,并在评价报告中确定等级。

3.1.5 申请绿色金融服务的建筑项目,应对节能措施、节水措施、建筑能耗和 碳排放等进行计算和说明,并应形成专项报告。

[条文说明]3.1.5 本条对申请绿色金融服务的建筑项目提出了要求。2016年8月31日,中国人民银行、财政部、国家发展改革委、环境保护部、银监会、证监会、保监会印发《关于构建绿色金融体系的指导意见》,指出绿色金融是指为支持环境改善、应对气候变化和资源节约高效利用的经济活动,即对环保、节能、清洁能源、绿色交通、绿色建筑等领域的项目投融资、项目运营、风险管理等所提供的金融服务。绿色金融服务包括绿色信贷、绿色债券、绿色股票指数和相关产品、绿色发展基金、绿色保险、碳金融等。对于申请绿色金融服务的建筑项目,应按照相关要求,对建筑的能耗和节能措施、碳排放、节水措施等进行计算和说明并形成专项报告。若绿色金融相关管理文件中无特殊规定,建筑能耗按本标准第7.2.9条的相关方法计算,节能措施说明包括用能设备能效、可再生能源利用、重要节能技术等;碳排放按本标准第9.2.15条的相关方法计算;建筑节水措施说明包括节水器具使用情况、用水计量情况等。

3.2 评价与等级划分

3.2.1 绿色建筑评价指标体系应由安全耐久、健康舒适、生活便利、资源节约、环境宜居 5 类指标组成,且每类指标均包括控制项和评分项;评价指标体系还统一设置加分项。

[条文说明]3.2.1 此次修订,以"四节一环保"为基本约束,遵循"以人民为中心"的发展理念,将绿色建筑的评价指标体系调整为安全耐久、健康舒适、生活便利、资源节约、环境宜居5 类指标,构建了新的评价指标体系。其优点体现在:①符合目前国家新时代鼓励创新的发展方向;②指标体系名称易懂、易理解和易接受;③指标名称体现了新时代所关心的问题,能够提高人们对绿色建筑的可感知性。

每类指标均包括控制项和评分项。为了鼓励绿色建筑采用提高、创新的建筑技术和 产品建造更高性能的绿色建筑,评价指标体系还统一设置"提高与创新"加分项。

3.2.2 控制项的评定结果应为达标或不达标;评分项和加分项的评定结果应为分值。

[条文说明]3.2.2 控制项的评价同本标准 2017 年版。评分项的评价,依据评价条文的规定确定得分或不得分,得分时根据需要对具体评分子项确定得分值,或根据具体达标程度确定得分值。加分项的评价,依据评价条文的规定确定得分或不得分。

本标准中评分项的赋分有以下几种方式:

- 1 一条条文评判一类性能或技术指标,且不需要根据达标情况不同赋以不同分值时, 赋以一个固定分值,该评分项的得分为0分或固定分值,在条文主干部分表述为"评价分值为某分";
- 2 一条条文评判一类性能或技术指标,需要根据达标情况不同赋以不同分值时,在 条文主干部分表述为"评价总分值为某分",同时将不同得分值表述为"得某分"的形式, 且从低分到高分排列;递进的档次特别多或者评分特别复杂的,则采用列表的形式表达, 在条文主干部分表述为"按某表的规则评分";
- 3 一条条文评判一类性能或技术指标,但需要针对不同建筑类型或特点分别评判时, 针对各种类型或特点按款或项分别赋以分值,各款或项得分均等于该条得分,在条文主 干部分表述为"按下列规则评分":
 - 4 一条条文评判多个技术指标, 将多个技术指标的评判以款或项的形式表达, 并按

款或项赋以分值,该条得分为各款或项得分之和,在条文主干部分表述为"按下列规则分别评分并累计":

5 一条条文评判多个技术指标,其中某技术指标需要根据达标情况不同赋以不同分值时,首先按多个技术指标的评判以款或项的形式表达并按款或项赋以分值,然后考虑达标程度不同对其中部分技术指标采用递进赋分方式。

可能还会有少数条文出现其他评分方式组合。

本标准中评分项和加分项条文主干部分给出了该条文的"评价分值"或"评价总分值", 是该条可能得到的最高分值。

3.2.3 对于多功能的综合性单体建筑,应按本标准全部评价条文逐条对适用的 区域进行评价,确定各评价条文的得分。

[条文说明]3.2.3 不论建筑功能是否综合,均以各个条/款为基本评判单元。对于某一条文,只要建筑中有相关区域涉及,则该建筑就参评并确定得分。对于条文下设两款分别针对住宅建筑和公共建筑,所评价建筑如果同时具有住宅建筑和公共建筑,则需按这两种功能分别评价后再取平均值。总体原则为:只要有涉及即全部参评;系统性、整体性指标应总体评价;所有部分均满足要求才给分;递进分档的条文,按"就低不就高"的原则确定得分;上述情况之外的特殊情况可特殊处理。标准后文中不再一一说明。建筑整体的等级仍按本标准的规定确定。

3.2.4 绿色建筑评价的分值设定应符合表 3.2.4 的规定。

	1 ☆4川石		评价打	旨标评分项流			提高与创
	控制项	安全	健康	生活	资源	环境	新加分项
	基础分值	耐久	舒适	便利	节约	宜居	满分值
预评价分值	400	100	100	70	200	100	100
评价分值	400	100	100	100	200	100	100

表 3.2.4 绿色建筑评价分值

注: 预评价时, 本标准第 6.2.10、6.2.11、6.2.12、6.2.13、9.2.11 条不得分。

[条文说明]3.2.4 本次修订的绿色建筑评价分值与本标准 2017 年版变化较大。控制项基础分值的获得条件是满足本标准所有控制项的要求。对于住宅建筑和公共建筑, 5 类指标同等重要, 所以未按照不同建筑类型划分各评价指标评分项的总分值。本次修订, 将绿色建筑的评价指标体系评分项分值进行了调整。"资源节约"指标包含了节地、节能、节水、节材的相关内容, 故该指标的总分值高于其他指标。"提高与创新"为加分项, 鼓

励绿色建筑性能提升和技术创新。

"生活便利"指标中"物业管理"小节为建筑项目投入运行后的技术要求,因此,相比 绿色建筑的评价,预评价时"生活便利"指标的满分值有所降低。

本条规定的评价指标评分项满分值、提高与创新加分项满分值均为最高可能的分值。 绿色建筑评价应在建筑工程竣工验收后进行,对于刚刚竣工验收后即评价的建筑,部分 与运行有关的条文无法得分。

3.2.5 绿色建筑评价的总得分应按下式进行计算:

$$Q = (Q_0 + Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_A) /10$$
 (3.2.5)

式中: Q——总得分;

 Q_0 ——控制项基础分值, 当满足所有控制项的要求时取 400 分;

Q₁~Q₅——分别为评价指标体系 5 类指标(安全耐久、健康舒适、生活便利、 资源节约、环境宜居)评分项得分;

Q_A——提高与创新加分项得分。

[条文说明]3.2.5 本条对绿色建筑评价中的总得分的计算方法作出了规定。参评建筑的总得分由控制项基础分值、评分项得分和提高与创新项得分三部分组成,总得分满分为 110 分。控制项基础分值的获得条件是满足本标准所有控制项的要求,提高与创新项得分应按本标准第 9 章的相关要求确定。

3.2.6 绿色建筑划分应为基本级、一星级、二星级、三星级 4 个等级。

[条文说明]3.2.6 本标准 2017 年版规定绿色建筑的等级为一星级、二星级、三星级 3个等级,本次修订,在 2017 年版规定的星级基础上,增加了"基本级"。

目前我省将绿色建筑一星级作为绿色建筑施工图审查的技术要求,有力推进了绿色建筑规模化发展。《绿色建筑评价标准》作为划分绿色建筑性能档次的评价工具,既要体现其性能评定、技术引领的行业地位,又要兼顾其推广普及绿色建筑的重要作用。因此,在本次修订中新增了"基本级",扩大绿色建筑的覆盖面。基本级的设置,主要考虑与国家标准一致,便于交流。

3.2.7 当满足全部控制项要求时,绿色建筑等级应为基本级。

[条文说明]3.2.7 控制项是绿色建筑的必要条件, 当建筑项目满足本标准全部控制项的要求时, 绿色建筑的等级即达到基本级。

3.2.8 绿色建筑星级等级应按下列规定确定:

- 1 一星级、二星级、三星级的绿色建筑均应满足本标准全部控制项的要求, 且每类指标的评分项得分不应小于其评分项满分值的 30%;
- 2 一星级、二星级、三星级的绿色建筑均应进行全装修,全装修工程质量、选用材料及产品质量应符合国家及山东省现行有关标准的规定;
- 3 一星级、二星级、三星级的绿色建筑项目应进行能源利用效率核查,结果 应满足设计要求和符合国家及山东省现行相关标准的规定;
- 4 当总得分分别达到 60 分、70 分、85 分且应满足表 3.2.8 的要求时,绿色建筑等级分别为一星级、二星级、三星级。

	一星级	二星级	三星级
围护结构热工性能 的提高比例	5%	10%	20%
节水器具用水效率 等级	3 级	2 级	2 级
		室外与卧室之间、分	室外与卧室之间、分
		户墙(楼板)两侧卧	户墙(楼板)两侧卧
		室之间的空气声隔声	室之间的空气声隔声
住宅建筑隔声性能	_	性能以及卧室楼板的	性能以及卧室楼板的
		撞击声隔声性能达到	撞击声隔声性能达到
		低限标准限值和高要	高要求标准限值
		求标准限值的平均值	
室内主要空气污染	10%	20%	25%
物浓度降低比例	10%	20%	23%
外窗气密性能 符合国家和山东省现行相关设计标准和技术文 与外窗本体的结合部位应)			

表 3.2.8 一星级、二星级、三星级绿色建筑的技术要求

- 注: 1 围护结构热工性能的提高基准均为国家及山东省现行相关建筑节能设计标准,并应符合《山东省民用建筑外窗工程技术要求》的规定。
 - 2 住宅建筑隔声性能对应的标准为现行国家标准《民用建筑隔声设计规范》 GB 50118。
 - 3 室内主要空气污染物包括氨、甲醛、苯、甲苯、二甲苯、总挥发性有机物、 氡、可吸入颗粒物等,其浓度降低基准为现行国家标准《室内空气质量标 准》GB/T 18883 的有关要求。

[条文说明]3.2.8 当对绿色建筑进行星级评价时,首先应该满足本标准规定的全部控制项要求,同时规定了每类评价指标的最低得分要求,以实现绿色建筑的性能均衡。按本标准第3.2.5条的规定计算得到绿色建筑总得分,当总得分分别达到60分、70分、85分且满足本条第1~3款及表3.2.8的要求时,绿色建筑等级分别为一星级、二星级、三星级。

第2款,对一星级、二星级、三星级绿色建筑提出了全装修的交付要求。建筑全装修交付能够有效杜绝擅自改变房屋结构等"乱装修"现象,保证建筑安全,避免能源和材料浪费,降低装修成本,节约项目时间,减少室内装修污染及装修带来的环境污染,并避免装修扰民,更加符合现阶段人民对于健康、环保和经济性的要求,对于积极推进绿色建筑实施具有重要的作用。原建设部于 2002 年印发的《商品住宅装修一次到位实施导则》(建住房〔2002〕190 号)明确提出,推行住宅装修一次到位,其根本目的是"逐步取消毛还房,直接向消费者提供全装修成品房;规范装修市场,促使住宅装修生产从无序走向有序"。2008 年印发的《关于进一步加强住宅装饰装修管理的通知》(建质〔2008〕133 号)重申了各地要继续贯彻落实建住房〔2002〕190 号文的要求。

2016年5月31日印发的《中共山东省委山东省人民政府关于切实加强和改进城市规划建设管理工作的实施意见》(鲁发[2016]15号)文件中第(十六)条"提升建设工程质量"提到,2017年设区城市新建高层住宅实行全装修。2017年1月13日印发的《山东省人民政府办公厅关于贯彻国办发[2016]71号文件大力发展装配式建筑的实施意见》(鲁政办发[2017]28号)提出,推进一体化装修:实行装配式建筑装饰装修与主体结构、机电设备协同施工,促进整体卫浴、厨房、轻质隔墙、设备管线等标准化、集成化、模块化应用,推广菜单式全装修。2017年设区城市新建高层住宅实行全装修,2020年新建高层、小高层住宅淘汰毛坯房。2018年7月2日,为了明确山东省装配式住宅建筑全装修实施要求,推广绿色建造模式和节能环保产品,提升装修工程质量和建筑品质,推进装配式建筑持续健康发展,山东省住房和城乡建设厅印发了《山东省装配式住宅建筑全装修技术要求(试行)》。

近年来,我省各地市陆续出台地方政策文件来推行全装修,在绿色建筑中全面推行 全装修的时机已经基本成熟。对于住宅建筑,宜提供菜单式的全装修方案,每个装修方 案均应提供可供选择的不同档次、风格的材料和设备菜单,促进标准化和个性化的协调, 满足消费者个性化需要,满足市场需求。本标准术语中,对住宅建筑和公共建筑的全装 修范围进行了界定。为保证全装修的质量,避免二次装修,住宅建筑的套内及公共区域全装修应满足现行行业标准《住宅室内装饰装修设计规范》JGJ 367、《住宅室内装饰装修工程质量验收规范》JGJ/T 304、现行国家标准《建筑装饰装修工程质量验收标准》GB 50210 及山东省现行相关标准规范的要求。公共建筑的公共区域全装修应满足现行国家标准《建筑装饰装修工程质量验收标准》GB 50210 及山东省现行相关标准规范的要求。全装修所选用的材料和产品,如瓷砖、卫生器具、板材等,应为质量合格产品,满足相应产品标准的质量要求。此外,全装修所选用的材料和产品,应结合当地的品牌认可和消费习惯,最大程度避免二次装修。

第3款,对一星级、二星级、三星级绿色建筑提出了进行能源利用效率核查的要求。 2019年3月1日起施行的《山东省绿色建筑促进办法》(山东省人民政府令第323号) 第十五条规定:"二星级以上绿色建筑项目在竣工验收前,建设单位应当进行能源利用效 率测评。测评结果不符合设计要求的,应当责成有责任的单位进行整改"。为了有效实施 该规定,增加本款。申报时应依据现行国家标准《建筑节能工程施工质量验收标准》GB 50411的相关规定,提交建筑能源利用效率核查表,见附录A。

本款评价方法为查阅建筑能源利用效率核查表、建筑外墙节能构造现场实体检验报告或外墙传热系数检验报告、建筑门窗节能性能标识证书和计算报告或见证取样检验报告、外窗气密性能现场实体检验报告、供暖和空调系统、照明系统、太阳能光热系统见证取样检验报告、设备系统节能性能检验报告。

第 4 款,为提升绿色建筑性能和品质,对一星级、二星级、三星级绿色建筑在围护结构热工性能、节水、隔声、室内空气质量、外窗气密性能等方面提出了更高的技术要求。

对一星级、二星级、三星级绿色建筑的围护结构热工性能提出了更高的要求。根据《山东省民用建筑外窗工程技术要求》(鲁建节科字〔2018〕43 号)的规定,民用建筑外窗传热系数(K值)不大于 2.0W/(m² K)。当按国家及山东省现行节能设计标准与表3.2.8 中的提高比例计算得到的外窗传热系数大于 2.0W/(m² K)时,也必须按 2.0W/(m² K)进行评价。具体计算方法,详见本标准第 7.2.4 条第 1 款的条文说明。

对一星级、二星级、三星级绿色建筑用水器具的用水效率提出了要求,相关用水器具的用水效率标准及评价方法,详见本标准第7.2.15条的条文说明。

对二星级、三星级绿色建筑(住宅建筑)的隔声性能提出了要求。国家标准《民用

建筑隔声设计规范》GB 50118-2010 第 4 章规定了住宅建筑声环境的相关限值,但对室外与卧室之间的空气声隔声性能未作规定。根据住房城乡建设部标准定额司函《住房城乡建设部标准定额司关于开展(民用建筑隔声设计规范》局部修订工作的函》(建标标函〔2018〕176 号)的要求,国家标准《民用建筑隔声设计规范》GB 50118-2010 正在局部修订,本次修订将增加住宅建筑室外与卧室之间空气声隔声性能的指标要求,还将对住宅建筑声环境性能指标进行提升。在《民用建筑隔声设计规范》GB 50118-2010 局部修订尚未实施前,二星级绿色建筑的室外与卧室之间的空气声隔声性能按($D_{nT. w} + C_{tr}$) \geq 35dB 进行评价,三星级绿色建筑的室外与卧室之间的空气声隔声性能按($D_{nT. w} + C_{tr}$) \geq 40dB 进行评价,其余指标按现行国家标准《民用建筑隔声设计规范》GB 50118 的有关规定进行评价。在《民用建筑隔声设计规范》GB 50118 的有关规定进行评价。在《民用建筑隔声设计规范》GB 50118-2010 局部修订完成且实施后,本条应按照修订后的住宅建筑室外与卧室之间、分户墙或分户楼板两侧卧室之间的空气声隔声性能,以及卧室楼板的撞击声隔声性能的相关要求进行评价。室外与卧室之间空气声隔声性能,预评价时通过外窗和外墙的隔声性能,按组合隔声量的理论进行预测,并提供分析报告;评价时,应提供室外与卧室之间空气声隔声性能检测报告。其余指标的评价方法,详见本标准第 5.1.5 和 5.2.7 条的条文说明。

对一星级、二星级、三星级绿色建筑室内主要的空气污染物浓度限值进行了规定。 具体评价方法,详见本标准第5.1.1条的条文说明。

对一星级、二星级、三星级绿色建筑的外窗气密性能及外窗安装施工质量提出了要求。外窗的气密性能应符合现行国家标准《公共建筑节能设计标准》GB 50189、《建筑节能工程施工质量验收标准》GB 50411 与行业标准《严寒和寒冷地区居住建筑节能设计标准》JGJ 26 和山东省工程建设标准《居住建筑节能设计标准》DB37/5026、《公共建筑节能设计标准》DB37/5155 以及《山东省民用建筑外窗工程技术要求》等的规定。在外窗安装施工过程中,应严格按照相关工法和相关验收标准要求进行,外窗四周的密封应完整、连续,并应形成封闭的密封结构,保证外窗洞口与外窗本体的结合部位严密;外窗的现场气密性能检测与合格判定应符合现行行业标准《公共建筑节能检测标准》JGJ/T 177及《居住建筑节能检测标准》JGJ/T 132 的规定。评价方法为:预评价查阅外窗气密性能设计文件、外窗气密性能检测报告;评价查阅外窗气密性能设计文件、外窗气密性能检测报告。

4 安全耐久

4.1 控制项

4.1.1 场地应避开滑坡、泥石流等地质危险地段,易发生洪涝地区应有可靠的防洪涝基础设施;场地应无危险化学品、易燃易爆危险源的威胁,应无电磁辐射、含氡土壤的危害。

[条文说明]4.1.1 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 4.1.2 条基础上发展而来。本条对绿色建筑的场地安全提出要求。建筑场地与各类危险源的距离应满足相应危险源的安全防护距离等控制要求,对场地中不利地段或潜在危险源应采取必要的避让、防护或控制、治理等措施,对场地中存在的有毒有害物质应采取有效的治理措施进行无害化处理,确保符合各项安全标准。

场地的防洪设计应符合现行国家标准《防洪标准》GB 50201 和《城市防洪工程设计规范》GB/T 50805 的有关规定,选址尚应符合现行国家标准《城市抗震防灾规划标准》GB 50143 和《建筑抗震设计规范》GB 50011 的规定; 电磁辐射应符合现行国家标准《电磁环境控制限值》GB 8702 的有关规定; 土壤中氡浓度的控制应符合现行国家标准《民用建筑工程室内环境污染控制规范》GB 50325 的有关规定; 场地及周边的加油站、加气站等危险源应满足国家现行相关标准中关于安全防护距离等的控制要求。

本条的评价方法为:预评价查阅项目区位图、场地地形图、勘察报告、环评报告、相关检测报告或论证报告;根据《中国土壤氡概况》的相关划分,对于整体处于土壤氡含量低背景、中背景区域,且工程场地所在地垫不存在地质断裂构造的项目,可不提供土壤氡检测报告。山东半岛东部及山东省中南部高背景区:包括山东半岛的烟台、威海、文登、荣成等地区及鲁中南的泰安、蒙阴地区。

评价查阅项目区位图、场地地形图、勘察报告、环评报告、相关检测报告或论证报告。

4.1.2 建筑结构应满足承载力和建筑使用功能要求。建筑外墙、屋面、门窗、 幕墙及外保温等围护结构应满足安全、耐久和防护的要求。

[条文说明]4.1.2 本条适用于各类民用建筑的预评价、评价。

本条为新增条文。建筑结构的承载力和建筑使用功能要求主要涉及安全与耐久,是

满足建筑长期使用要求的首要条件。

结构的耐久性指在规定的使用年限内结构构件保持承载力和外观的能力,并满足建筑使用功能要求。

结构设计应满足承载能力极限状态计算和正常使用极限状态验算的要求,并应符合国家现行相关标准的规定,包括但不限于《建筑结构可靠性设计统一标准》GB 50068、《建筑结构荷载规范》GB 50009、《混凝土结构设计规范》GB 50010、《混凝土结构耐久性设计标准》GB/T 50476、《建筑地基基础设计规范》GB 50007、《钢结构设计标准》GB 50017、《建筑抗震设计规范》GB 50011、《砌体结构设计规范》GB 50003、《木结构设计标准》GB 50005、《建筑抗震鉴定标准》GB 50023 及《高层建筑混凝土结构技术规程》JGJ 3 等;同时,针对建筑运行期内可能出现地基不均匀沉降、使用环境影响导致的钢材锈蚀等影响结构安全的问题,应定期对结构进行检查、维护与管理。

建筑外墙、屋面、门窗、幕墙及外保温等围护结构应满足安全、耐久和防护要求,与建筑主体结构连接可靠,且能适合主体结构在多遇地震及各种荷载作用下的变形。建筑围护结构防水对于建筑美观、耐久性能、正常使用功能和寿命都有重要影响,因此建筑外墙、建筑外保温系统、屋面、幕墙门窗等还应符合《建筑外墙防水工程技术规程》JGJ/T 235、《外墙外保温工程技术规程》JGJ 144、《屋面工程技术规范》GB 50345、《建筑幕墙》GB/T 21086、《玻璃幕墙工程技术规范》JGJ 102、《建筑玻璃点支承装置》JG/T 138、《吊挂式玻璃幕墙用吊夹》JG 139、《金属与石材幕墙工程技术规范》JGJ 133、《塑料门窗工程技术规程》JGJ 103、《铝合金门窗工程技术规范》JGJ 214 等现行标准中关于防水材料和防水设计施工的规定。

本条的评价方法为: 预评价查阅相关设计文件(含设计说明、计算书等); 评价查阅相关竣工图(含设计说明、计算书等)。

4.1.3 外遮阳、太阳能设施、空调室外机位、外墙花池等外部设施应与建筑主体结构统一设计、施工,并应具备安装、检修与维护条件。

[条文说明]4.1.3 本条适用于各类民用建筑的预评价、评价。

本条为新增条文。外遮阳、太阳能设施、空调室外机位、外墙花池等外部设施应与建筑主体结构统一设计、施工,确保连接可靠,并应符合《建筑遮阳工程技术规范》JGJ 237、《民用建筑太阳能热水系统应用技术标准》GB 50364、《民用建筑太阳能光伏系统应用技术规范》JGJ 203、《装配式混凝土建筑技术标准》GB/T 51231 等现行相关标准的规

定。

外部设施需要定期检修和维护,因此在建筑设计时应考虑后期检修和维护条件,如设计检修通道、马道和吊篮固定端等。当与主体结构不同时施工时,应设预埋件,并在设计文件中明确预埋件的检测验证参数及要求,确保其安全性与耐久性。比如,每年频发的空调室外机坠落伤人或安装人员作业时跌落伤亡事故,已成为建筑的重大危险源,故新建或改建建筑设计时预留与主体结构连接牢固的空调室外机安装位置(有条件应设置空调室外机混凝土搁板),并与拟定的机型大小匹配,同时预留操作空间,保障安装、检修、维护人员安全。

本条的评价方法为: 预评价查阅相关设计文件(含设计说明、计算书等); 评价查阅相关竣工图(含设计说明、计算书)、检修及维护条件。

4.1.4 建筑内部的非结构构件、设备及附属设施等应连接牢固并能适应主体结构变形。

[条文说明]4.1.4 本条适用于各类民用建筑的预评价、评价。

本条为新增条文。建筑内部的非结构构件包括非承重墙体、附着于楼屋面结构的构件、装饰构件和部件等。设备指建筑中为建筑使用功能服务的附属机械、电气构件、部件和系统,主要包括电梯、照明和应急电源、通信设备,管道系统、采暖和空气调节系统、烟火监测和消防系统、公用天线等。附属设施包括整体卫生间、橱柜、储物柜等。

建筑内部非结构构件、设备及附属设施等应满足建筑使用的安全性。如门窗、防护栏杆等应满足国家现行相关设计标准要求并安装牢固,防止跌落事故发生;且应根据腐蚀环境选用材料或进行耐腐蚀处理。近年因装饰装修脱落导致人员伤亡事故屡见不鲜,如吊链或连接件锈蚀导致吊灯掉落、吊顶脱落、瓷砖脱落等等。室内装饰装修除应符合国家现行相关标准的规定外,还需对承重材料的力学性能进行检测验证。装饰构件之间以及装饰构件与建筑墙体、楼板等构件之间的连接力学性能应满足设计要求,连接可靠并能适合主体结构在地震作用之外各种荷载作用下的变形。

建筑部品、非结构构件及附属设备等应采用机械固定、焊接、预埋等牢固性构件连接方式或一体化建造方式与建筑主体结构可靠连接,防止由于个别构件破坏引起连续性破坏或倒塌。应注意的是,以膨胀螺栓、捆绑、支架等连接或安装方式均不能视为一体化措施。

适应主体结构的变形, 主要指以下几个方面:

非结构构件适应主体结构变形。对非结构构件的填充墙,因适应主体结构梁与柱受力变形以及不同材料之间因温度膨胀系数不同而产生的变形,需采取相应的构造要求。如填充墙高超过一定高度与长度即设腰梁及构造柱,与结构柱之间设拉接筋;对非结构构件的装配式内墙条板,在楼面与梁(板)底连接处设金属限位连接卡,墙板之间设子母槽等;对非结构构件的移动式档案密集柜,楼面需足够刚度,避免移动档案柜脱轨等。

设备及附属设施适应主体结构变形。设备、设施等应采用机械固定、焊接、预埋等牢固构件连接方式或一体化建造方式与建筑主体结构可靠连接,变形协调,防止由于个别构件破坏引起连续性破坏或倒塌,或者因建筑主体变形过大而影响设备设施的正常运行。

本条的评价方法为: 预评价查阅相关设计文件(含各连接件、配件、预埋件的力学性能及检测检验报告,计算书,施工图)、产品设计要求等;评价查阅相关竣工图、材料决算清单、产品说明书、力学及耐久性能测试或试验报告。

4.1.5 建筑外门窗必须安装牢固,其抗风压性能和水密性能应符合国家现行有 关标准的规定。

[条文说明]4.1.5 本条适用于各类民用建筑的预评价、评价。

本条为新增条文。门窗是实现建筑物理性能的极其重要的功能性构件。设计时外门窗应以满足不同气候及环境条件下的建筑物使用功能要求为目标,明确抗风压性能、水密性能指标和等级,并应符合《塑料门窗工程技术规程》JGJ 103、《铝合金门窗工程技术规范》JGJ 214 等现行相关标准的规定。外门窗的检测与验收应按《建筑外门窗气密、水密、抗风压性能分级及检测方法》GB/T 7106、《建筑外窗气密、水密、抗风压性能现场检测方法》JG/T 211、《建筑门窗工程检测技术规程》JGJ/T 205、《建筑装饰装修工程质量验收标准》GB 50210 等现行相关标准的规定执行。

本条的评价方法为:预评价查阅相关设计文件、门窗产品三性检测报告;评价查阅相关竣工图、门窗产品三性检测报告和外窗现场三性检测报告、施工工法说明文件。

4.1.6 建筑卫生间、浴室的楼、地面应设置防水层,墙面、顶棚应设置防潮层。 [条文说明]4.1.6 本条适用于各类民用建筑的预评价、评价。

本条为新增条文。本条对卫生间、浴室等有水房间的防水进行了规定。为避免水蒸 气透过墙体或顶棚,使隔壁房间或住户受潮气影响,导致诸如墙体发霉、破坏装修效果 (壁纸脱落、发霉,涂料层起鼓、粉化,地板变形等)等情况发生,要求所有卫生间、 浴室楼、地面做防水层,墙面、顶棚均做防潮处理。防水层和防潮层设计应符合现行行业标准《住宅室内防水工程技术规范》JGJ 298 的规定。

本条的评价方法为: 预评价查阅相关设计文件、防水和防潮措施说明; 评价查阅相 关竣工图、防水和防潮措施说明。

4.1.7 走廊、疏散通道等通行空间应满足紧急疏散、应急救护等要求,且应保持畅通。

[条文说明]4.1.7 本条适用于各类民用建筑的预评价、评价。

本条为新增条文。在发生突发事件时,疏散和救护顺畅非常重要,必须在场地和建筑设计中考虑到对策和措施。建筑应根据其高度、规模、使用功能和耐火等级等因素合理设置安全疏散和避难设施。安全出口和疏散门的位置、数量、宽度及疏散楼梯间的形式,应满足人员安全疏散的要求。走廊、疏散通道等应满足现行国家标准《建筑设计防火规范》GB 50016、《防灾避难场设计规范》GB 51143 等对安全疏散和避难、应急交通的相关要求。本条重在强调保持通行空间路线畅通、视线清晰,不应有阳台花池、机电箱等凸向走廊、疏散通道的设计,防止对人员活动、步行交通、消防疏散埋下安全隐患。

本条的评价方法为:预评价查阅相关设计文件;评价查阅相关竣工图、相关管理规 定。

4.1.8 建筑应具有安全防护的警示和引导标识系统。

[条文说明]4.1.8 本条适用于各类民用建筑的预评价、评价。

本条为新增条文。根据国家标准《安全标志及其使用导则》GB 2894-2008, 安全标志分为禁止标志、警告标志、指令标志和提示标志四类。本条所述是指具有警示和引导功能的安全标志,应在场地及建筑公共场所和其他有必要提醒人们注意安全的场所显著位置上设置。

设置显著、醒目的安全警示标志,能够起到提醒建筑使用者注意安全的作用。警示标志一般设置于人员流动大的场所,青少年和儿童经常活动的场所,容易碰撞、夹伤、湿滑及危险的部位和场所等。比如禁止攀爬、禁止倚靠、禁止伸出窗外、禁止抛物、注意安全、当心碰头、当心夹手、当心车辆、当心坠落、当心滑倒、当心落水等。

设置安全引导指示标志,包括紧急出口标志、避险处标志、应急避难场所标志、急 救点标志、报警点标志等,以及其他促进建筑安全使用的引导标志等。比如紧急出口标 志,一般设置于便于安全疏散的紧急出口处,结合方向箭头设置于通向紧急出口的通道、

楼梯口等处。

本条的评价方法为: 预评价查阅标识系统设计与设置说明文件; 评价查阅标识系统设计与设置说明文件、相关影像材料等。

4.1.9 变电室、高压线路及通信基站上下及贴邻房间电场磁场强度不应大于表 **4.1.9** 中的限值。

表 4.1.9 环境中电场、磁场、电磁场场量参数的方均根值控制限值

场所	电场强度 E (V/m)	磁场强度 H(A/m)	磁感应强度 Β (μT)	等效平面波功率密度 Seq(W/m²)
变电室或高压线路贴邻房间	4000	80	100	
通信基站贴邻房间	12	0.032	0.04	0.4

[条文说明]4.1.9 本条适用于各类民用建筑的预评价、评价。

本条为新增条文。随着人们生活水平的不断提高,建筑物内电磁辐射对人体的损害越来越受到重视,《电磁环境控制限值》GB8702-2014 第 4.1 条规定了环境中电场、磁场、电磁场场量参数的方均根值应满足表 1 要求:

磁场强度 磁感应强度 等效平面波功率密度 电场强度 频率范围 Seq (W/m^2) E (V/m) H (A/m) $B(\mu T)$ $40000/f^2$ $32000/f^2$ 1Hz~8Hz 8000 8Hz~25Hz 8000 4000/f 5000/f 200/f 5/f 0.025kHz~1.2kHz 4/f 1.2kHz~2.9kHz 200/f 3.3 4.1 2.9kHz~57kHz 70 10/f 12/f 57kHz~100kHz 4000/f 10/f 12/f 0.1MHz~3MHz 40 0.1 0.12 4 $67/f^{1/2}$ $0.17/f^{1/2}$ $0.21/f^{1/2}$ 3MHz~30MHz 12/f

表 1 公众暴露控制限值

高低压用电频率为 50Hz, 当前通信信号 3G、4G、5G 频率在 2~5GHz。

《电子工程环境保护设计规范》GB50814-2013 第 6.1.2 条规定电子工程建设场所的工频电磁场强度不宜超过表 2 规定的限值:

表 2 工频电磁场强度限值

场强类别	频率(Hz)	容许最大值
电场强度	50	4.0kV/m
磁场强度	50	0.1mT

两规范的要求是一致的。

通信基站贴邻房间,是指发射天线地面投影点为圆心半径 50m 的底面下只有一个楼板间隔的房间。移动基站监测参照《移动通信基站电磁辐射环境监测方法》HJ 972—2018,应提供具有相关资质的监测机构的监测报告。

本条的评价方法为: 预评价查阅相关设计文件及电磁辐射检测报告或论证报告; 评价查阅相关竣工图、相关检测报告或论证报告。

4.2 评分项

I 安全

4.2.1 采用基于性能的抗震设计并合理提高建筑的抗震性能,评价分值为 10 分。

[条文说明]4.2.1 本条适用于各类民用建筑的预评价、评价。

本条为新增条文。采用基于性能的抗震设计并适当提高建筑的抗震性能指标要求,如采用"中震不屈服"以上的性能目标,或者为满足使用功能而提出比现行标准要求更高的刚度要求等,可以提高建筑的抗震安全性及功能性;采用隔震、消能减震设计,是提高建筑物的设防类别或提高其抗震性能要求时的有效手段。

不同的抗震设防类别,其性能设计要求也有所不同。"小震不坏、中震可修、大震不倒"是一般情况的性能要求,参考《建筑抗震设计规范》GB 50011-2010(2016 版),地震下可选定的高于一般情况的预期性能目标可参考表 3。

表 3 可供选定的高于一般情况的预期性目标

地震	性能 1	性能 2	性能3	性能 4
水准				
多遇	完好	完好	完好	完好
地震	元好	元灯	元好	元灯

设防	完好,正常使用	基本完好,检修后继	轻微损坏, 简单修	轻微至接近中等损坏,
地震	元好,正吊使用	续使用	理后继续使用	变形<3【⊿Ue】
罕遇	基本完好,检修	轻微至中等破坏,修	其破坏需加固后继	接近严重破坏,大修后
地震	后继续使用	复后继续使用	续使用	继续使用

针对具体工程的需要和功能,可以对整体结构,也可以对某些部位或者关键构件或者节点,灵活运用各种措施达到表 3 预期的性能目标。鼓励采用新技术新材料进行抗震性能设计。

在实际操作时,在确保建筑结构满足"小震不坏、中震可修、大震不倒"一般情况的性能要求的情况下,根据项目情况,可以考虑对整体结构、局部部位或者关键构件按更高的抗震性能目标进行设计,或者采取减少地震的作用。局部部位或者关键构件可根据建筑平面、立面的规则性、构件的重要性程度选取。

本条的评价方法为:预评价查阅相关设计文件、结构计算文件;评价查阅相关竣工 图、结构计算文件、项目安全分析报告及应对措施结果。

- 4.2.2 采取保障人员安全的防护措施,评价总分值为 15 分,并按下列规则分别评分并累计:
 - 1 采取措施提高阳台、外窗、窗台、防护栏杆等安全防护水平,得5分;
- 2 建筑物出入口均设外墙饰面、门窗玻璃意外脱落的防护措施,并与人员通行区域的遮阳、遮风或挡雨措施结合,得 5 分;
 - 3 利用场地或景观形成可降低坠物风险的缓冲区、隔离带,得5分。

[条文说明]4.2.2 本条适用于各类民用建筑的预评价、评价。

本条为新增条文。

第1款,阳台、外窗、窗台、防护栏杆等强化防坠设计有利于降低坠物伤人风险,阳台外窗采用高窗设计、限制窗扇开启角度、窗台与绿化种植整合设计、适度减少防护栏杆垂直杆件水平净距、安装隐形防盗网等措施,防止物品坠落伤人。此外,外窗的安全防护可与纱窗等相结合,既可以防坠物伤人,还可以防蚊防盗。

第2、3款,外墙饰面、外墙粉刷及保温层等掉落伤人的现象在国内各个城市都有发生,甚至尚未住人的新建小区也出现瓷砖大面积掉落现象。在建筑间距和通路设计时,除了考虑消防、采光、通风、日照间距等,还需考虑采取避免坠物伤人的措施。由于建筑物外墙钢筋混凝土、填充墙体、水泥砂浆、外贴保温、外墙饰面层及门窗等的热胀冷缩系数不同,建筑设计时虽然采取设墙面变形缝的措施,但受环境温度、湿度及施工质

量的影响,各种材料会发生不同程度的变形,材料连接界面破坏,出现外墙空鼓,最后导致坠落影响人民生命与财产安全。因此,要求建筑物出入口均设外墙饰面、门窗玻璃意外脱落的防护措施,并与人员通行区域的遮阳、遮风或挡雨措施结合,同时采取建立护栏、缓冲区、隔离带等安全措施,消除安全隐患。

本条的评价方法为: 预评价查阅相关设计文件等: 评价查阅相关竣工图。

- **4.2.3** 采用具有安全防护功能的产品或配件,评价总分值为 **10** 分,并按下列规则分别评分并累计:
 - 1 采用具有安全防护功能的玻璃,得5分;
 - 2 采用具备防夹功能的门窗,得5分。

[条文说明]4.2.3 本条适用于各类民用建筑的预评价、评价。

本条为新增条文。

第1款,参考国家现行标准《建筑用安全玻璃》GB 15763《建筑玻璃应用技术规程》 JGJ 113 的有关规定以及《建筑安全玻璃管理规定》(发改运行〔2003〕2116号)对建筑 用安全玻璃使用的建议,人体撞击建筑中的玻璃制品并受到伤害的主要原因是缺少足够 的安全防护。为了尽量减少建筑用玻璃制品在受到冲击时对人体造成划伤、割伤等,在 建筑中使用玻璃制品时需尽可能地采取下列措施:

- 1) 选择安全玻璃制品时, 充分考虑玻璃的种类、结构、厚度、尺寸, 尤其是合理选择安全玻璃制品霰弹袋冲击试验的冲击历程和冲击高度级别等:
 - 2) 对关键场所的安全玻璃制品采取必要的其他防护:
 - 3) 关键场所的安全玻璃制品设置容易识别的标识。

本款所述包括分隔建筑室内外的玻璃门窗、幕墙、防护栏杆等采用安全玻璃,室内玻璃隔断、玻璃护栏等采用夹胶钢化玻璃以防止自爆伤人。

第2款,生活中常见的自动门窗、推拉门、旋转门等夹人事故频频发生,尤其是对于缺乏自我保护能力的孩子来说更为危险。因此,对于人流量大、门窗开合频繁的位置,可采用可调力度的闭门器或具有缓冲功能的延时闭门器等措施,防止夹人伤人事故的发生。主要部位包括但不限于电梯门、大堂入口门、旋转门、推拉门窗等。

本条的评价方法为: 预评价查阅相关设计文件等; 评价查阅相关竣工图、安全玻璃及门窗检测检验报告。

4.2.4 室内外地面或路面设置防滑措施,评价总分值为 10 分,并按下列规则

分别评分并累计:

Dw

- 1 建筑出入口及平台、公共走廊、电梯门厅、厨房、浴室、卫生间等设置防 滑措施,防滑等级不低于现行行业标准《建筑地面工程防滑技术规程》JGJ/T 331 规定的 Bd、Bw 级,得3分:
- 2 建筑室内外活动场所采用防滑地面,防滑等级达到现行行业标准《建筑地 面工程防滑技术规程》JGJ/T 331 规定的 Aw 级,得 4分;
- 3 建筑坡道、楼梯踏步防滑等级达到现行行业标准《建筑地面工程防滑技术 规程》JGJ/T 331 规定的 Ad、Aw 级或按水平地面等级提高一级,并采用防滑条 等防滑构造技术措施,得3分。

[条文说明]4. 2. 4 本条适用于各类民用建筑的预评价、评价。

本条为新增条文。建筑防滑地面工程对于保证人身安全至关重要。光亮、光滑的室 内地面,因雨雪天气造成的室外湿滑地面和浴室、厕所等湿滑地面极易导致伤害事故。 按现行行业标准《建筑地面工程防滑技术规程》JGJ/T 331 的规定,Aw、Bw、Cw、Dw 分别表示潮湿地面防滑安全程度为高级、中高级、中级、低级, Ad、Bd、Cd、Dd 分别 表示干态地面防滑安全程度为高级、中高级、中级、低级。

表 4 室外及室内潮湿地面湿态防滑值

防滑等级	防滑安全程度	防滑值 BPN
Aw	高	BPN≥80
Bw	中高	60≤BPN<80
Cw	中	45≤BPN<60
Dw	低	BPN<45

防滑等级 防滑安全程度 静摩擦系数 COF Aw 高 COF≥0.7 中高 $0.6 \le COF \le 0.7$ Bw 中 Cw 0.5 < COF < 0.6

低

表 5 室内干态地面静摩擦系数

本条的评价方法为: 预评价查阅相关设计文件: 评价查阅相关竣工图、防滑材料有 关测试报告。

采取人车分流措施,且步行和自行车交通系统有充足照明,评价分值为 4.2.5

COF<0.5

5分。

[条文说明]4.2.5 本条适用于各类民用建筑的预评价、评价。

本条为新增条文。随着城镇汽车保有量大幅提升,交通压力与日俱增。建筑场地内的交通状况直接关系着使用者的人身安全。人车分流将行人和机动车完全分离开,互不干扰,可避免人车争路的情况,充分保障行人尤其是老人和儿童的安全。提供完善的人行道路网络可鼓励公众步行,也是建立以行人为本的城市的先决条件。

步行和自行车交通系统如果照明不足,往往会导致人们产生不安全感,特别是在空旷或比较空旷的公共区域。充足的照明可以消除不安全感,对降低犯罪率、防止发生交通事故、提高夜间行人的安全性有重要作用。

夜间行人的不安全感和实际存在的危险与道路等行人设施的照度水平和照明质量密切相关。步行和自行车交通系统照明应以路面平均照度、路面最小照度和垂直照度为评价指标,其照明标准值应不低于现行行业标准《城市道路照明设计标准》CJJ45 的有关要求。

级	道路类型	路面平均照度	路面最小照度	最小垂直照度	最小半柱照度
别	坦	Eh, av(lx)	Eh, min(lx)	Ev, min(lx)	Esc, min(lx)
1	商业步行街	15	3	5	3
2	流量较高的道路	10	2	3	2
3	流量中等的道路	7.5	1.5	2.5	1.5
4	流量交底的道路	5	1	1.5	1

表 6 人行及非机动车道照明标准值

本条的评价方法为:预评价查阅照明设计文件、人车分流专项设计文件;评价查阅相关竣工图。

II 耐久

- 4.2.6 采取提升建筑适变性的措施,评价总分值为 14 分,并按下列规则分别评分并累计:
- 1 采取通用开放、灵活可变的使用空间设计,或采取建筑使用功能可变措施, 得 6 分;
 - 2 建筑结构与建筑设备管线分离,得6分;
 - 3 采用与建筑功能和空间变化相适应的设备设施布置方式或控制方式,得 2

分。

[条文说明]4.2.6 本条适用于各类民用建筑的预评价、评价。

本条在本标准2017年版第7.2.4条基础上发展而来。

第1款,随着社会和技术的进步,以及人们对建筑的需求不断提升,若建筑不能满足使用需求的变化,很大可能将以被改造或拆除告终,成为"短命"建筑。本款旨在鼓励采取措施提升建筑适变性,有利于使用空间功能转换和改造再利用,避免建筑"短命"。建筑适变性包括建筑的适应性和可变性。适应性是指使用功能和空间的变化潜力,可变性是指结构和空间上的形态变化。通过利用建筑空间和结构潜力,使建筑空间和功能适应使用者需求的变化,在适应当前需求的同时,使建筑具有更大的弹性以应对变化,以此获得更长的使用寿命。如采用大开间和进深结构方案、灵活布置内隔墙等措施提升建筑适变性,减少室内空间重新布置时对建筑构件的破坏,延长建筑使用寿命。

可采取的措施包括:

- 1 楼面采用大开间和大进深结构布置:
- 2 灵活布置内隔墙;
- 3 提高楼面活荷载取值,活荷载取值根据其建筑功能要求对应高于《建筑荷载设计规范》GB 50092012 第 5.1.1 条表 5.1.1 中规定值的 25%,且不少于 1kN/m²;
 - 4 其它可证明满足功能适变的措施。

特别地,住宅一般以"户"为单位,可采取的措施包括考虑户内居室的可转换性及转换后的使用舒适性,如2居室可转换为3居室,3居室可转换为2居室,即满足上述第(2)条;结构布置时,墙、柱、梁的布置不影响居室转换且卧室中间不露梁、柱,即满足上述第(1)项;结构计算时,提高楼面活荷载取值适应灵活隔墙,即满足上述第(3)项等。

第2款,根据现行行业标准《装配式住宅建筑设计标准》JGJ/T 398的规定,管线分离是指建筑结构体中不埋设设备及管线,将设备及管线与建筑结构体相分离的方式。管线与结构、墙体的寿命不同,给建筑全寿命期的使用和维护带来了很大的困难。建筑结构与设备管线分离设计,可有利于建筑的长寿化。建筑结构不仅仅指建筑主体结构,还包括外围护结构和公共管井等可保持长久不变的部分。建筑结构与设备管线分离设计便于设备管线维护更新,可保证建筑能够较为便捷地进行管线改造与更换,从而达到延长建筑使用寿命目的。装配式建筑采用 SI 体系,即支撑体 S(Skeleton)和填充体 I(Infill)相分

离的建筑体系, 可认为实现了建筑主体结构与建筑设备管线分离。

其他可采用的技术措施包括:

- 1 墙体与管线分离,或采用轻质隔墙、双层贴面墙;双层贴面墙的墙内侧设装饰壁板,架空空间用来安装铺设电气管线,开关,插座使用:对外墙架空空间可同时整合内保温工艺。
- 2 设公共管井,集中布置设备主管线;卫生间架空地面上设同层排水,设双层天棚等,可方便铺设设备管线。
- 3 室内地板下面采用次级结构支撑,或者卫生间设架空地面上设同层排水,或者室内设双层天棚等措施,方便设备管线的铺设。对公共建筑,也可直接在结构天棚下合理布置管线,采用明装方式。
- 第3款,指能够与第1款中建筑功能或空间变化相适应的设备设施布置方式或控制方式,既能够提升室内空间的弹性利用,也能够提高建筑使用时的灵活度。比如家具、电器与隔墙相结合,满足不同分隔空间的使用需求;或采用智能控制手段,实现设备设施的升降、移动、隐藏等功能,满足某一空间的多样化使用需求;还可以采用可拆分构件或模块化布置方式,实现同一构件在不同需求下的功能互换,或同一构件在不同空间的功能复制。以上所有变化,均不需要改造主体及围护结构,具体实施可表现为:
- 1 平面布置时,设备设施的布置及控制方式满足建筑空间适变后要求,无需大改造即可满足使用舒适性及安全要求:如层内或户内水、强弱电、采暖通风等竖井及分户计量控制箱位置的不改变即可满足建筑适变的要求。
- 2 设备空间模数化设计,设备设施模块化布置,便于拆卸、更换等;包括整体厨卫、标准尺寸的电梯等。
- 3 对公共建筑,采用可移动、可组合的办公家具、隔断等,形成不同的办公空间,方便长短期的不同人群的移动办公需求。

本条的评价方法为:预评价查阅相关设计文件、建筑适变性提升措施的设计说明; 评价阶段查阅相关竣工图、建筑适变性提升措施的设计说明。

- **4.2.7** 采取提升建筑部品部件耐久性的措施,评价总分值为 **10** 分,并按下列规则分别评分并累计:
 - 1、室内给水系统采用铜管或不锈钢管,得2分;
 - 2、电气系统采用与建筑物同寿命电线电缆,得3分;

3、活动配件选用长寿命产品,并考虑部品组合的同寿命性,不同使用寿命的部品组合时,采用便于分别拆换、更新和升级的构造,得 5 分。

【条文说明】4.2.7 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 6.2.2 条基础上发展而来。

第 1 款,要求室内给水系统采用铜管、不锈钢管、综合性能好的塑料管道(同时应符合现行国家标准《建筑给水排水设计规范 GB50015 对给水系统管材选用的规定》)。

第2款,要求电气系统采用于建筑物同寿命的电线电缆。建筑物使用寿命为50年或70年,而一般线缆寿命是25年,线缆大部分在建筑物主体保护管内,更换不便,国家住建部发布的标准《额定电压450/750V及以下双层共挤绝缘辐照交联无卤低烟阻燃电线》JG/T441和《额定电压0.6/1kV双层共挤绝缘辐照交联无卤低烟阻燃电力电缆》JG/T422,要求线缆达到70年,与建筑物同寿命。

第 3 款,主要是对建筑物的各类五金配件、管道阀门、开关龙头等活动配件,倡导选用长寿命的优质产品,且构造上易于更换,同时还应考虑为维护、更换操作提供方便条件。部分常见的耐腐蚀、抗老化、耐久性能好的部品部件见表 7。

常见类型	要求
室内给水系统	采用铜管或不锈钢管
电气系统	采用与建筑物同寿命电线电缆
活动配件	门窗反复启闭性能达到相应产品标准要求的 2 倍
	遮阳产品机械耐久性达到相应产品标准要求的最高级
	水嘴寿命达到相应产品标准要求的 1.2 倍
	阀门寿命达到相应产品标准要求的 1.5 倍

表 7 常见的耐腐蚀、抗老化、耐久性好的部品部件及要求

本条的评价方法为: 预评价查阅相关设计文件、产品设计要求; 评价查阅相关竣工 图、产品说明书或检测报告。

- 4.2.8 提高建筑结构材料的耐久性,评价总分值为 10 分,并按下列规则评分:
 - 1 按 100 年进行耐久性设计,得 10 分。
 - 2 采用耐久性能好的建筑结构材料,满足下列条件之一,得 10 分:
 - 1) 对于混凝土构件,提高钢筋保护层厚度或采用高耐久混凝土:
 - 2) 对于钢构件,采用耐候结构钢及耐候型防腐涂料;
 - 3) 对于木构件,采用防腐木材、耐久木材或耐久木制品。

[条文说明]4.2.8 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 7.2.10 条基础上发展而来。

第1款,按100年进行耐久性设计,可在造价提高有限的情况下提高结构综合性能,减少后期检测维修工程量。结构的耐久性设计应使结构构件出现耐久性极限状态标志或限制的年限不小于100年,耐久性设计应包括保证构件质量的预防性处理措施、减小侵蚀作用的局部环境改善措施、延缓构件出现损伤的表面防护措施和延缓材料性能劣化速度的保护措施。国家标准《建筑结构可靠性设计统一标准》GB 50068-2018的附录C提出了耐久性设计的具体规定。

第2款第1项,高耐久混凝土指满足设计要求下,结合具体应用环境(如盐碱地等),对抗渗性能、抗硫酸盐侵蚀性能、抗氯离子渗透性能、抗碳化性能及早期抗裂性能等耐久性指标提出合理要求的混凝土。其各项性能的检测与试验应按现行国家标准《普通混凝土长期性能和耐久性能试验方法标准》GB/T 50082 的规定执行,测试结果应按现行行业标准《混凝土耐久性检验评定标准》JGJ/T 193 的规定进行性能等级划分。

第 2 款第 2 项,耐候结构钢是指符合现行国家标准《耐候结构钢》GB/T 4171 要求的钢材; 耐候型防腐涂料是指符合现行行业标准《建筑用钢结构防腐涂料》JG/T 224 的 II型面漆和长效型底漆。

第2款第3项,根据国家标准《多高层木结构建筑技术标准》GB/T51226-2017,多高层木结构建筑采用的结构木材可分为方木、原木、规格材、层板胶合木、正交胶合木、结构复合木材、木基结构板材以及其他结构用锯材,其材质等级应符合现行国家标准《木结构设计标准》GB50005的有关规定。根据现行国家标准《木结构设计标准》GB50005,所有在室外使用,或与土壤直接接触的木构件,应采用防腐木材。在不直接接触土壤的情况下,可采用其他耐久木材或耐久木制品。

对于采用多种类型构件的建筑, 第 2 款得分按照材料用量比例计算, 最终得分应在分别对应该款 3 项评分后, 按照材料质量进行加权平均计算。

本条的评价方法为: 预评价查阅相关设计文件; 评价查阅相关竣工图、材料用量计算书、材料决算清单。

- 4.2.9 合理采用耐久性好、易维护的装饰装修建筑材料,评价总分值为 9 分, 并按下列规则分别评分并累计:
 - 1 采用耐久性好的外饰面材料,得3分;

- 2 采用耐久性好的防水和密封材料,得3分:
- 3 采用耐久性好、易维护的室内装饰装修材料,得3分。

[条文说明]4.2.9 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 7.2.14 条基础上发展而来。为了保持建筑物的风格、视觉效果和人居环境,装饰装修材料在一定使用年限后会进行更新替换。如果使用易沾污、难维护及耐久性差的装饰装修材料或做法,则会在一定程度上增加建筑物的维护成本,且施工也会带来有毒有害物质的排放、粉尘及噪声等问题。对采用耐久性好的装饰装修材料评价内容举例如表 8。

分类	评价内容		
外饰面材料	采用水性氟涂料或耐候性相当的涂料,耐候性应符合行业标准《建筑		
	用水性氟涂料》HG/T4104-2009 中优等品的要求。		
	选用耐久性与建筑幕墙设计年限相匹配的饰面材料		
	合理采用清水混凝土		
防水和密封	选用耐久性符合现行国家标准《绿色产品评价 水与密封材料》GB/T		
	35609 规定的材料		
室内装饰装修材料	选用耐洗刷性≥5000 次的内墙涂料		
	选用耐磨性好的陶瓷地砖(有釉砖耐磨性不低于 4 级,无釉砖磨坑体		
	积不大于 127mm³)		
	采用免装饰面层的做法(如清水混凝土、免吊顶设计)。每类材料的用		
	量比例需不小于 80%。		

表 8 采用耐久性好的装饰装修材料评价内容

本条的评价方法为: 预评价查阅相关设计文件; 评价查阅装饰装修竣工图、材料决算清单、材料检测报告及有关耐久性证明材料。

4.2.10 合理采用建筑墙体保温与结构一体化技术体系,评价分值为7分。

[**条文说明**]4.2.10 本条在本标准 2017 年版第 5.2.5 条基础上发展而来。

建筑墙体保温与结构一体化是墙体保温层与建筑围护结构同步施工完成的构造技术。它集建筑保温功能与墙体围护功能于一体,墙体不需另行采取保温措施,即可满足现行建筑节能标准要求,属于结构自保温技术,具有保温性能优良、施工便捷、安全性能好等特点。

2011年,省住房和城乡建设厅下发了《关于在全省积极发展应用建筑保温与结构一体化技术的通知》、关于印发《山东省建筑保温与结构一体化技术产品认定条件》的通知:

2012 年 11 月,省人大第 34 次会议已通过了《山东省民用建筑节能条例》,其中第十三条提出了明确要求:"鼓励开发应用建筑墙体保温与结构一体化技术,逐步提高其在建筑中的应用比例。在省人民政府规定的期限和区域内,全面推广应用建筑墙体保温与结构一体化技术",这为全省建筑墙体保温与结构一体化技术的推广应用奠定了良好的基础。建筑墙体保温与结构一体化技术目前主要包括:

- 1、现浇混凝土结构复合墙体保温体系类,主要包括 IPS 现浇混凝土剪力墙自保温体系、FS 外模板现浇混凝土复合墙体保温体系、复合保温板现浇混凝土墙体保温体系、CL 建筑保温体系等:
- 2、砌体自保温体系类,主要包括非承重砌块墙体自保温体系、承重墙体结构自保温体系等:
- 3、夹芯复合墙保温结构体系类,主要包括夹心复合砖(砌块)砌体结构自保温体系等;
- 4、装配式复合墙板保温体系类,主要包括装配式大板自保温体系、装配式条板自保温体系等。

另外, 部分地区采用聚苯模块现浇混凝土墙体保温体系也属于保温与结构一体化体系的范畴。随着技术的不断进步, 还会出现新的技术体系。

本条的评价方法为: 预评价查阅相关设计文件; 评价阶段查阅相关竣工图, 施工资料, 并现场核实。

5 健康舒适

5.1 控制项

5.1.1 室内空气中的氨、甲醛、苯、甲苯、二甲苯、总挥发性有机物、氡等污染物浓度应符合现行国家标准《室内空气质量标准》GB/T 18883 的有关规定。建筑室内和建筑主出入口处应禁止吸烟,并应在醒目位置设置禁烟标志。

[条文说明]5.1.1 本条适用于各类民用建筑的预评价、评价。预评价时,对于全装修建筑项目,可仅对室内空气中的甲醛、苯、总挥发性有机物进行浓度预评估;对于非全装修建筑项目,本条不参评。评价时,对于全装修建筑项目,应按本条要求执行;对于非全装修建筑项目,符合现行国家标准《民用建筑工程室内环境污染控制规范》GB 50325的有关要求,视为本条达标。

本条在本标准 2017 年版第 8.1.6 条基础上发展而来。建筑室内空气中的氨、甲醛、苯、甲苯、二甲苯、总挥发性有机物、氡等污染物以及吸烟(包括二手烟)对人体的危害已得到普遍认识,通过建筑的污染物浓度控制及禁烟控制,是实现绿色建筑的基本要求。

在项目实施过程中,即使所使用的装修材料、家具制品均满足各自污染物限量控制标准,但装修后多种类或大量材料制品的叠加使用,仍可能造成室内空气污染物浓度超标,控制空气中各类污染物的总浓度指标是保障建筑使用者健康的基本前提。项目在设计阶段即应采取措施,对室内空气污染物浓度进行预评估,预测工程建成后室内空气污染物的浓度情况,指导建筑材料的选用和优化。

吸烟及二手烟对人健康同样会造成较大的危害,目前国内一些城市已经发布了控制 吸烟条例。因此,本条规定建筑室内和建筑主出入口处禁止吸烟,并设置禁烟标识。本 条所述的建筑室内,主要指的是公共建筑室内和住宅建筑内的公共区域。建筑主入口、 可开启窗和建筑新风入口周围8米内禁止吸烟,并应设置有明显的禁烟标识。

预评价时,应综合考虑建筑情况、室内装修设计方案、装修材料的种类、使用量、室内新风量、环境温度等诸多影响因素,以各种装修材料、家具制品主要污染物的释放特征(如释放速率)为基础,以"总量控制"为原则。依据装修设计方案,选择典型功能房间(卧室、客厅、办公室等)使用的主要建材(3种-5种)及固定家具制品,对室内

空气中甲醛、苯、总挥发性有机物的浓度水平进行预评估。其中建材污染物释放特性参数及与评估计算方法可参考现行行业标准《住宅建筑室内装修污染控制技术标准》JGJ/T 436、《民用建筑绿色装修设计材料选用规程》 T/CECS 621-2019 和《公共建筑室内空气质量控制设计标准》JGJ/T 461 的相关规定。

评价时,应选取每栋单体建筑中具有代表性的典型房间进行采样检测,采样和检验方法应符合现行国家标准《室内空气质量标准》GB/T 18883 的相关规定,采样的房间数量不少于房间总数的5%.且每个单体建筑不少于3间。

本条的评价方法为:预评价查阅相关设计文件、相关说明文件(装修材料种类、用量,禁止吸烟措施)、预评估分析报告;评价查阅相关竣工图,投入使用的项目尚应查阅室内空气质量检测报告、禁烟标志。

5.1.2 应采取措施避免厨房、餐厅、打印复印室、卫生间、地下车库等区域的空气和污染物串通到其他房间;应防止厨房、卫生间的排气倒灌。

[条文说明]5.1.2 本条适用于各类民用建筑的预评价、评价。

本条在本标准2017年版第8.2.9、8.2.11条基础上发展而来。

避免厨房、餐厅、打印复印室、卫生间、地下车库等区域的空气和污染物串通到室内其他空间,为此要保证合理的气流组织,采取合理的排风措施避免污染物扩散,将厨房和卫生间设置于建筑单元(或户型)自然通风的负压侧,防止厨房或卫生间的气味进入室内而影响室内空气质量。同时,可以对不同功能房间保证一定压差,避免气味或污染物串通到室内其他空间。如设置机械排风,应保证负压,还应注意其取风口和排风口的位置,避免短路或污染。

厨房和卫生间的排气倒灌,对室内空气品质影响巨大,因此本条对避免厨房和卫生间排气倒灌进行了规定。厨房和卫生间的排气道设计应符合现行国家标准《住宅设计规范》GB 50096、《住宅建筑规范》GB50368、《建筑设计防火规范》GB 50016、《民用建筑设计统一标准》GB50352等规范的有关规定。排气道的断面、形状、尺寸和内壁应有利于排烟(气)通畅,防止产生阻滞、涡流、串烟、漏气和倒灌等现象。其他措施还包括安装止回排气阀、防倒灌风帽等。止回排气阀的各零件部品表面应平整,不应有裂缝、压坑及明显的凹凸、垂痕、毛刺、孔洞等缺陷。

禁止燃气热水器的排烟管排至油烟机烟道,以免造成危险。

本条的评价方法为: 预评价查阅相关设计文件、气流组织模拟分析报告: 评价查阅

相关竣工图、气流组织模拟分析报告、相关产品性能检测报告或质量合格证书。

- 5.1.3 给水排水系统的设置应符合下列规定:
- 1 生活饮用水水质应满足现行国家标准《生活饮用水卫生标准》GB 5749 的要求:
- 2 应制定水池、水箱等储水设施定期清洗消毒计划并实施,且生活饮用水储水设施每半年清洗消毒应不少于 1 次;
 - 3 应使用构造内自带水封的便器,且其水封深度应不小于 50mm;
 - 4 非传统水源管道和设备应设置明确、清晰的永久性标识。

[条文说明]5.1.3 本条适用于各类民用建筑的预评价、评价。在生活饮用水水质符合现行国家标准《生活饮用水卫生标准》GB 5749 规定的前提下,若建筑未设置储水设施,本条第1款直接通过。

本条为新增条文。满足健康要求的给排水系统,是建筑健康安全的重要保障。

第1款,能够提供符合卫生要求的生活饮用水是绿色建筑的基本前提之一。建筑生活饮用水用水点出水水质的常规指标应符合现行国家标准《生活饮用水卫生标准》GB 5749的规定。

第2款,生活饮用水储水设施包括生活饮用水供水系统储水设施、集中生活热水储水设施、储有生活用水的消防储水设施、冷却用水储水设施、游泳池及水景平衡水箱(池)等。储水设施清洗后应进行水质检测,水质合格后方可恢复供水。

第3款,水封装置是建筑排水管道系统中用以实现水封功能的装置。便器构造内自带水封,能够在保证污废水顺利排出的前提下,最大限度的防止排水系统中的有害气体逸入室内,避免室内环境受到污染,有效保护人体健康。便器构造内自带水封时,有效水封深度不得小于50mm,且不能采用活动机械密封替代水封。

第 4 款,要求对非传统水源的管道和设备设置明确、清晰的永久标识,可最大程度地避免在施工、日常维护或维修时发生误接、误饮、误用的情况,为用户提供健康用水保障。目前建筑行业有关部门仅对管道标记的颜色进行了规定,尚未制定统一的民用建筑管道标识标准图集,标识设置可参考现行国家标准《工业管道的基本识别色、识别符号和安全标识》GB 7231、《建筑给水排水及采暖工程施工质量验收规范》GB 50242 等现行国家标准中的相关规定。

本条的评价方法为: 预评价查阅市政供水的水质检测报告(可用同一水源邻近项目

一年以内的水质检测报告)、相关设计文件(含对卫生器具和地漏水封要求的说明、标识设置说明);评价查阅相关竣工图、产品说明、各用水部门水质检测报告、管理制度、工作记录。

5.1.4 主要功能房间的室内噪声级应满足现行国家标准《民用建筑隔声设计规范》GB 50118 中的低限要求。

[条文说明]5.1.4 本条适用于各类民用建筑的预评价、评价。

本条沿用本标准 2017 年版第 8.1.1 条。本条所指的噪声控制对象包括室内自身声源和来自建筑外部的噪声侵袭。室内噪声源一般为通风空调设备、日用电器等;室外噪声源则包括周边交通噪声、社会生活噪声、甚至工业噪声等。住宅、办公、商业、旅馆、医院、学校建筑主要功能房间的噪声级低限值,应分别与《民用建筑隔声设计规范》GB 50118 中不同类型建筑涉及房间的要求一一对应;其余类型民用建筑,可参照相关类型进行评价。

本条的评价方法为:预评价检查建筑设计平面图纸,基于环评报告室外噪声要求对室内的背景噪声影响(也包括室内噪声源影响)的分析报告以及图纸上的落实情况,及可能的声环境专项设计报告;评价审核典型时间、主要功能房间的室内噪声检测报告。

5.1.5 主要功能房间的外墙、隔墙、楼板和门窗的隔声性能应满足现行国家标准《民用建筑隔声设计规范》GB 50118 中的低限要求。

[条文说明]5.1.5 本条适用于各类民用建筑的预评价、评价。

本条沿用本标准 2017 年版第 8.1.2 条。外墙、隔墙、楼板和门窗的隔声性能主要包括空气声隔声性能,楼板的隔声性能除了空气声隔声性能之外,还包括撞击声隔声性能。住宅、办公、商业、旅馆、医院、学校建筑主要功能房间围护结构构件的隔声性能,应满足《民用建筑隔声设计规范》GB 50118 中围护结构隔声标准的低限要求;其余类型民用建筑,可参照相关类型进行评价。

本条的评价方法为:预评价审核设计图纸(主要是围护结构的构造说明、图纸、以及相关的检测报告);评价检查典型房间现场隔声检测报告,结合现场检查设计要求落实情况进行达标评价。

5.1.6 建筑照明数量和质量应符合现行国家标准《建筑照明设计标准》GB 50034 的规定。

[条文说明]5.1.6 本条适用于各类民用建筑的预评价、评价; 对住宅建筑的公共部分

及土建装修一体化设计的房间应满足本条要求。

本条在本标准 2017 年版第 8.1.3 条基础上发展而来。室内照明质量是影响室内环境质量的重要因素之一,良好的照明不但有利于提升人们的工作和学习效率,更有利于人们的身心健康,减少各种职业疾病。良好、舒适的照明要求在参考平面上具有适当的照度水平,避免眩光,显色效果良好。各类民用建筑中的室内照度、眩光值、一般显色指数等照明数量和质量指标应满足现行国家标准《建筑照明设计标准》GB 50034 的有关规定。

本条的评价方法为: 预评价查阅电气专业相关设计文件和图纸, 及专项计算分析报告: 评价查阅电气专业相关竣工图纸, 以及建筑室内照度、统一眩光值的现场检测报告。

5.1.7 人员长期停留的场所应采用符合现行国家标准《灯和灯系统的光生物安全性》GB/T 20145 规定的无危险类照明产品。

[条文说明]5.1.7 本条适用于各类民用建筑的预评价、评价。

本条为新增条文。对照明产品光生物安全性作了规定,现行国家标准《灯和灯系统的光生物安全性》GB/T 20145 规定了照明产品不同危险级别的光生物安全指标及相关测试方法,为保障室内人员的健康,人员长期停留场所的照明应选择安全组别为无危险类的产品。

本条的评价方法为:预评价查阅相关设计文件、计算书;评价查阅相关竣工图、计算书、现场检测报告、产品说明书及产品型式检验报告。

5.1.8 选用 LED 照明产品的光输出波形的波动深度应满足现行国家标准《LED 室内照明应用技术要求》 GB/T 31831 的规定。

[条文说明]5.1.8 本条适用于各类民用建筑的预评价、评价。

本条为新增条文。光源光输出波形的波动深度又称为频闪比,用来评价光输出的波动对人的影响。当电光源光通量波动的频率,与运动(旋转)物体的速度(转速)成整倍数关系时,运动(旋转)物体的运动(旋转)状态,在人的视觉中就会产生静止、倒转、运动(旋转)速度缓慢,以及上述三种状态周期性重复的错误视觉,轻则导致视觉疲劳、偏头痛和工作效率的降低,重则引发事故。光通量波动的波动深度越大,负效应越大,危害越严重。

本条的评价方法为:预评价查阅相关设计文件、计算书;评价查阅相关竣工图、计算书、现场检测报告、产品说明书及产品型式检验报告。

5.1.9 应采取措施保障室内热环境。采用集中供暖空调系统的建筑,房间内的

温度、湿度、新风量等设计参数应符合现行国家标准《民用建筑供暖通风与空气调节设计规范》GB 50736 的有关规定;采用非集中供暖空调系统的建筑,应具有保障室内热环境的措施或预留条件。

[条文说明]5.1.9 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 8.1.4 条基础上发展而来。建筑应满足室内热环境舒适度的要求。采用集中供暖空调系统的建筑,其房间的温度、湿度、新风量等是室内热环境的重要指标,应满足现行国家标准《民用建筑供暖通风与空气调节设计规范》GB 50736中的有关规定。对于非集中供暖空调系统的建筑,应有保障室内热环境的措施或预留条件,如分体空调安装条件等。

本条的评价方法为: 预评价查阅相关设计文件; 评价查阅相关竣工图、室内温湿度 检测报告。

5.1.10 主要功能房间应具有现场独立控制的热环境调节装置。

[条文说明]5.1.10 本条适用于各类民用建筑的预评价、评价。

本条为新增条文。本条文强调用户个体对室内热舒适的调控性。采用个性化热环境 调节装置可以满足不同人员对热舒适的差异化需求,从而最大限度地改善个体热舒适性, 提高室内人员对室内热环境的满意率。

对于采用集中供暖空调系统的建筑,应根据房间、区域的功能和所采用的系统形式,合理设置可现场独立调节的热环境调节装置。对于未采用集中供暖空调系统的建筑,应合理设计建筑热环境营造方案,具备满足个性化热舒适需求的可独立控制的热环境调节装置或功能。

本条的评价方法为:预评价查阅相关设计文件;评价查阅相关竣工图、产品说明书。

5.1.11 地下车库应设置与排风设备联动的一氧化碳浓度监测装置。

[条文说明]5.1.11 本条适用于各类民用建筑的预评价、评价。

本条沿用本标准 2017 年版第 8.2.11 条。地下车库空气流通不好,容易导致有害气体浓度过大,对人体造成伤害。有地下车库的建筑,车库设置与排风设备联动的一氧化碳检测装置,超过一定的量值时即报警并启动排风系统。所设定的量值可参考现行国家标准《工作场所有害因素职业接触限值 第 1 部分:化学有害因素》GBZ 2.1 等相关标准的规定。

本条的评价方法为: 预评价查阅相关设计文件: 评价查阅相关竣工图、运行记录。

5.2 评分项

I 室内空气品质

- 5.2.1 控制室内主要空气污染物的浓度,评价总分值为 9 分,并按下列规则分别评分并累计:
- 1 氨、甲醛、苯、甲苯、二甲苯总挥发性有机物、氡等污染物浓度低于现行 国家标准《室内空气质量标准》GB/T 18883 规定限值的 10%,得 2 分;低于 20%, 得 4 分;低于 25%,得 5 分;
- 2 室内 PM2.5 年均浓度不高于 25μg/m³, 且室内 PM10 年均浓度不高于 50μg/m³, 得 4 分。

[条文说明]5.2.1 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 8.1.7、11.2.10 条基础上发展而来。

第1款,在本标准第5.1.1条基础上对室内空气污染的浓度提出了更高的要求。具体预评估方法详见本标准第5.1.1条的条文说明。预评价时,可仅对甲醛、苯、总挥发性有机物进行浓度预评估。

第2款,对颗粒物浓度限值进行了规定。预评价时,全装修项目可通过建筑设计因素(门窗渗透风量、新风量、净化设备效率、室内源等)及室外颗粒物水平(建筑所在地近1年环境大气监测数据),对建筑内部颗粒物浓度进行估算。预评价的计算方法可参考现行行业标准《公共建筑室内空气质量控制设计标准》JGJ/T461中室内空气质量设计计算的相关规定;装修装饰材料选用预评估可参照《民用建筑绿色装修设计材料选用规程》T/CECS 621-2019进行。评价时,建筑内应具有颗粒物浓度监测传感设备,至少每小时对建筑内颗粒物浓度进行一次记录、存储,连续监测一年后取算术平均值,并出具报告。对于住宅建筑,应对每种户型主要功能房间进行全年监测;对于公共建筑,应每层选取一个主要功能房间进行全年监测。对于尚未投入使用或投入使用未满一年的项目,应对室内 PM2.5 和 PM10 的年平均浓度进行预评估。

本条的评价方法为:预评价查阅相关设计文件、建筑材料使用说明(种类、用量)、污染物浓度预评估分析报告;评价查阅相关竣工图、建筑材料使用说明(种类、用量)、污染物浓度预评估分析报告,投入使用的项目尚应查阅室内空气质量现场检测报告、PM2.5和PM10浓度计算报告(附原始监测数据)。

- 5.2.2 选择符合要求的室内装饰装修材料,评价总分值为8分,并按下列规则分别评分并累计:
- 1 选用有害物质限量满足国家现行绿色产品评价标准要求的装饰装修材料达到3种及以上,得2分;达到5种及以上,得5分;
- 2 选用满足表 5.2.2 规定的室内装饰装修材料达到 3 种,得 2 分;达到 4 种及以上,得 3 分。

表 5.2.2 常见室内装饰装修材料有害物质限量值

材料种类	甲醛释放量 (甲醛含量)	(VOC)含量, (g/L)	放射性
人造板和饰 面人造板	\leq 0.10 mg/(m 2 h)	/	/
水性内墙墙 面涂料	≤50(mg/kg)	≤80	/
瓷砖、饰面石 材、人造石材	/	/	内照射指数 ≤0.8, 外照 射指数≤ 1.0
木器涂料	水性: ≤80(mg/kg)	水性: ≤250 溶剂型: 聚氨酯类≤550, 醇酸类≤450, 不饱和聚酯类≤420	/
胶黏剂	溶剂型: ≤0.4(mg/kg) 水性: ≤0.8(mg/kg)	溶剂型: 橡胶类≤500, 其它类≤400; 水性: 橡胶类≤100, 其它类≤50; 本体型: 有机硅类≤100, 其它类≤50。	/

[条文说明]5.2.2 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 8.1.7 条基础上发展而来。从源头把控,选用绿色、环保、安全的室内装饰装修材料及家具产品是保障室内空气质量的基本手段。为提升家装消费品质量,满足人民日益增长的对健康生活的追求,国家于 2017 年 12 月 8 日发布了包括内墙涂覆材料、木器漆、地坪涂料、壁纸、陶瓷砖、卫生陶瓷、人造板和木质地板、防水涂料、密封胶、家具等产品在内的绿色产品评价系列国家标准。如现行国家标准《绿色产品评价 涂料》GB/T 35602、《绿色产品评价 纸和纸制品》GB/T 35613、《绿色产品评价 陶瓷砖 (板))》GB/T 35610、《绿色产品评价 人造板和木质地板》GB/T 35601、《绿

色产品评价 防水与密封材料》GB/T 35609 等,对产品中有害物质种类及限量进行了严格、明确的规定。对于室内装饰装修材料有害物质限量参考现有标准并统计大量检测数据基础上提出了更高的要求,为新增内容。旨在引导使用环保性能更好材料,进一步控制可能产生的室内空气污染。表 5.2.2 相应材料指标是结合目前我国最新修订的相关标准中的有害物质限量和绿色建筑对室内污染物的技术要求,将常见室内装饰装修材料有害物质限量值提高。当相应的国家环保标准(GB 18580、GB 18581、GB18582、GB18583、GB 6566)变更时,表 5.2.2 中材料的有害物质指标应相应提高 20%,提高后的指标大于表 5.2.2 所列指标时,以现列指标为准。本条旨在鼓励全装修项目严格把控装饰装修产品的质量,保证室内空气质量。

本条的评价方法为: 预评价查阅相关设计文件; 评价查阅相关竣工图、工程决算材料清单、产品清单及检测报告、标注标识。

II 水质

- 5.2.3 生活用水的水质符合国家现行相关标准的规定,评价总分值为 8 分,并 按下列规则评分:
- 1 直饮水、集中生活热水、游泳池水、采暖空调系统用水的水质符合国家现行相关标准的规定,得6分;
- 2 在满足第1款要求的基础上,景观水体、非传统水源的水质符合国家现行相关标准的规定,得8分。

[条文说明] 5.2.3 本条适用于各类民用建筑的预评价、评价。当项目中除生活饮用水供水系统外,未设置其他供水系统时,本条第一款可直接得分;鼓励利用非传统水源,未采用非传统水源的民用建筑本条第二款不得分。

本条为新增条文。

直饮水系统分为集中供水的管道直饮水系统和分散供水的终端直饮水处理设备。管道直饮水系统供水水质应符合现行行业标准《饮用净水水质标准》CJ 94 的要求;终端直饮水处理设备的出水水质标准可参考现行行业标准《饮用净水水质标准》CJ 94、《全自动连续微/超滤净水装置》HG/T 4111 等现行饮用净水相关水质标准和设备标准。

集中生活热水系统供水水质应符合现行行业标准《生活热水水质标准》CJ/T 521 的要求。

游泳池循环水处理系统水质应符合现行行业标准《游泳池水质标准》CJ 244 的要求。 采暖空调循环水系统水质应符合现行国家标准《采暖空调系统水质》GB/T 29044 的要求。

国家标准《民用建筑节水设计标准》GB 50555-2010 规定景观用水水源不得采用市政自来水和地下井水,可采用中水、雨水等非传统水源或地表水。当景观补水采用非传统水源时,水质应符合现行国家标准《城市污水再生利用 景观环境用水》 GBT18921 的要求。当景观水体用于全身接触、娱乐性用途时,即可能全身浸入水中进行嬉水、游泳等活动,如旱喷泉、嬉水喷泉等,水质应符合现行国家标准《生活饮用水卫生标准》 GB 5749 的要求。

非传统水源供水系统水质,应根据不同用途的用水符合现行国家标准城市污水再生利用系列标准的要求。设有模块化户内中水集成系统的项目,户内中水水质应符合现行行业标准《模块化户内中水集成系统技术规程》JGJ/T409的要求。

本条的评价方法为:预评价查阅相关设计文件、市政供水的水质检测报告(采用市政再生水时,可使用同一水源邻近项目一年以内的水质检测报告);评价查阅相关竣工图、设计说明、各类用水的水质检测报告,必要时现场核查。常规水质指标检测至少每季度一次,取样点至少应包含水源、水处理设施出水及最不利用水点。

- 5.2.4 生活饮用水水池、水箱等储水设施采取措施满足卫生要求,评价总分值为9分,并按下列规则分别评分并累计:
 - 1 使用符合国家现行相关标准要求的成品水箱,得3分;
 - 2 采取保证储水不变质的措施,得3分;
- 3 制定二次供水水质检测的管理制度,每季度应对储水设施进行清洗消毒一次,二次供水水质符合国家现行相关标准的规定,得 3 分。

[条文说明]5.2.4 本条适用于各类民用建筑的预评价、评价。如建筑未设置生活饮用水储水设施,本条可直接得分。

本条为新增条文。二次供水是目前各类民用建筑主要采用的生活饮用水供水方式。储水设施是建筑生活饮用水二次供水设施水质安全保障的关键环节。

第1款,现行国家标准《二次供水设施卫生规范》GB 17051 规定了建筑二次供水设施卫生要求和水质检测方法。使用符合现行国家标准《二次供水设施卫生规范》GB 17051 要求的成品水箱,能够有效避免现场加工过程中的污染问题,且在安全生产、品

质控制、减少误差、保证水质等方面均较现场加工更有优势。

第2款,常用的避免储水变质的主要技术措施包括:储水设施分格、保证设施内水流通畅、增加间接排水、检查口(人孔)加锁、溢流管及通气管口采取防止生物进入、采取必要的消毒措施的措施等。

第3款,《济南市生活饮用水卫生监督管理办法》、《青岛市生活饮用水卫生监督管理办法》、《淄博市生活饮用水卫生监督管理办法》等强化了对于二次供水水质的日常检测和管理,保障末端用水安全。建筑运行期间,物业管理部门应制定水质检测制度,定期检测二次供水水质,及时掌握水质安全情况,对于水质超标状况应能及时发现并进行有效处理,避免因水质不达标对人体健康及周边环境造成危害。二次供水水质检测应在储水设施、处理设备出水口、管网末端用水点分别取样。水质的检验应按现行国家标准《生活饮用水标准检验方法》GB 5750、《城市供水水质测定系列标准》CJ/T 141~CJ/T 150 等标准执行。每季度应对储水设施进行清洗消毒一次,消毒后进行现场取样水质检测,检测合格后方可供水。

本条的评价方法为:预评价查阅相关设计文件(含设计说明、储水设施详图、设备材料表);评价查阅相关竣工图(含设计说明、储水设施详图、设备材料表)、设备材料 采购清单或进场记录、二次供水工作记录、水质检测报告、水质检测档案,必要时现场 核查。

- 5.2.5 给排水管道和设备设置明确、清晰的永久性标识,评价总分值为 8 分, 并按下列规则评分:
 - 1 非传统水源、消防管道和设备设有明确、清晰的永久性标识,得 5 分;
 - 2 所有给排水管道和设备设置明确、清晰的永久性标识,得8分。

[条文说明]5.2.5 本条适用于各类民用建筑的预评价、评价。

本条为新增条文。现代化的建筑给排水管线繁多,如果没有清晰的标识,难免在施工或日常维护、维修时发生误接的情况,造成误饮误用,给用户带来健康隐患。

目前建筑行业有关部门仅对管道标记的颜色进行了规定,尚未制定统一的民用建筑管道标识标准图集。建筑内给排水管道及设备的标识设置可参考现行国家标准《工业管道的基本识别色、识别符号和安全标识》GB 7231、《建筑给水排水及采暖工程施工质量验收规范》GB 50974 等的相关要求。

本条的评价方法为: 预评价查阅相关设计文件、标识设置说明: 评价查阅相关竣工

Ⅲ 室内声环境

5.2.6 主要功能房间室内噪声级,评价总分值为8分。噪声级达到现行国家标准《民用建筑隔声设计规范》GB 50118 中的低限标准限值和高要求标准限值的平均值,得4分;达到高要求标准限值,得8分。

[条文说明|5.2.6 本条适用于各类民用建筑的预评价、评价。

本条沿用本标准 2017 年版第 8.2.1 条。国家标准《民用建筑隔声设计规范》GB 50118-2010 将住宅、办公、商业、医院等建筑主要功能房间的室内允许噪声级分"低限标准"和"高要求标准"两档列出。对于现行国家标准《民用建筑隔声设计规范》GB 50118 中包含的一些只有唯一室内噪声级要求的建筑(如学校),本条认定该室内噪声级对应数值为低限标准,而高要求标准则在此基础上降低 5dB(A)。需要指出,对于不同星级的旅馆建筑,其对应的要求不同,需要一一对应。

本条的评价方法为: 预评价查阅相关设计文件、噪声分析报告; 评价查阅相关竣工 图、室内噪声检测报告。

- 5.2.7 主要功能房间的隔声性能良好,评价总分值为 9 分,并按下列规则分别评分并累计:
- 1 构件及相邻房间之间的空气声隔声性能达到现行国家标准《民用建筑隔声设计规范》GB 50118 中的低限标准限值和高要求标准限值的平均值,得 3 分; 达到高要求标准限值,得 5 分;
- 2 楼板的撞击声隔声性能达到现行国家标准《民用建筑隔声设计规范》GB 50118 中的低限标准限值和高要求标准限值的平均值,得 3 分;达到高要求标准 限值,得 4 分。

[条文说明]5.2.7 本条适用于各类民用建筑的预评价、评价。

本条沿用本标准 2017 年版第 8.2.2 条。国家标准《民用建筑隔声设计规范》GB 50118-2010 将住宅、办公、商业、旅馆、医院等类型建筑的墙体、门窗、楼板的空气声隔声性能以及楼板的撞击声隔声性能分为"低限标准"和"高要求标准"两档列出。

第1款,对于现行国家标准《民用建筑隔声设计规范》GB 50118 中只规定了构件的单一空气隔声性能的建筑.本条认定该构件对应的空气隔声性能数值为低限标准限值.

而高要求标准限值则在此基础上提高5dB。

第2款,对于现行国家标准《民用建筑隔声设计规范》GB 50118 中只有单一楼板撞击声隔声性能的建筑类型,本条认定对应的楼板撞击声隔声性能数值为低限标准限值,高要求标准限值在低限标准限值降低 10dB。

对于现行国家标准《民用建筑隔声设计规范》GB 50118 没有涉及的类型建筑的围护结构构件隔声性能可对照相似类型建筑的要求评价。

本条的评价方法为: 预评价查阅相关设计文件、构件隔声性能的实验室检验报告; 评价查阅相关竣工图、构件隔声性能的实验室检验报告。

- 5.2.8 室内声学专项设计,评价总分值为 4 分,并按下列规则评分:
- 1 住宅建筑在平面布置和建筑构造上应采取防噪声措施,电梯不应与卧室、起居室紧邻布置,管道井、水泵房、风机房应采取有效的隔声措施,水泵、风机 采取减振措施,得4分。
- 2 公共建筑中的多功能厅、接待大厅、大型会议室和其他有声学要求的重要房间进行专项声学设计,满足相应功能要求,得 4 分。

[条文说明]5.2.8 本条适用于各类民用建筑的预评价、评价。

本条在本标准2017年版第8.2.3、8.2.4条基础上发展而来。

第1款,本标准要求采取行之有效的措施进一步减少噪声干扰对室内主要功能房间声环境的影响,包括优化建筑平面、空间布局,确保没有明显的噪声干扰;设备层、机房应采取合理的隔振和降噪措施.减少低频噪声和振动。

第2款,公共建筑中的多功能厅、接待大厅、大型会议室、讲堂、音乐厅、教室、餐厅和其他有声学要求的重要功能房间的各项声学设计指标应满足有关标准的要求。专项声学设计至少要求将上述房间的声学目标在建筑设计说明和相应的图纸中明确体现。

本条的评价方法为:预评价审核设计图纸、声学设计专项报告;评价查阅竣工图、 现场检测报告。

IV 室内光环境

- 5.2.9 充分利用天然光,评价总分值为 12 分,并按下列规则分别评分并累计:
- 1 住宅建筑室内主要功能空间至少 60%面积比例区域,其采光照度值不低于 300lx 的小时数平均不少于 8h/d,得 9分。

- 2 公共建筑按下列规则分别评分并累计:
 - 1) 内区采光系数满足采光要求的面积比例达到60%,得3分;
- 2) 地下空间平均采光系数不小于 0.5%的面积与地下室首层面积的比例达到 10%以上,得 3分:
- 3)室内主要功能空间至少 60%面积比例区域的采光照度值不低于采光要求的小时数平均不少于 4h/d,得 3分。
 - 3 主要功能房间有眩光控制措施,得3分。

[条文说明]5.2.9 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 8.2.6、8.2.7 条基础上发展而来。本条对住宅建筑和公共建筑达到采光照度要求的采光区域和采光时间提出了要求,以更为全面地评价室内采光质量。天然采光不仅有利于照明节能,而且有利于增加室内外的自然信息交流,改善空间卫生环境,调节空间使用者的心情。对于大进深、地下空间宜优先通过合理的建筑设计(如半地下室、天窗等方式)改善天然采光条件,且尽可能地避免出现无窗空间。对于无法避免的情况,鼓励通过导光管、棱镜玻璃等合理措施充分利用天然光,促进人们的舒适健康,但此时应对无法避免因素进行解释说明。

第1款和第2款针对住宅建筑和公共建筑分别提出评价要求。为了更加真实地反映 天然光利用的效果,采用基于天然光气候数据的建筑采光全年动态分析的方法对其进行 评价。建筑及采光设计时,可通过软件对建筑的动态采光效果进行计算分析,根据计算 结构合理进行采光系统设计。采光模拟应符合现行行业标准《民用建筑绿色性能计算标 准》JGJ/T449的相关规定。采光相关指标的计算过程中,相关参数应设定为:地面反射 比0.3,墙面0.6,外表面0.5,顶棚0.75。外窗的透射比应根据设计图纸确定。如果设计 图纸中涉及的相关参数有所不同. 需提供材料测试报告。

第 3 款,过度阳光进入室内会造成强烈的明暗对比,影响室内人员的视觉舒适度。 因此在充分利用天然光资源的同时,还应采取必要的措施控制不舒适眩光,如作业区域减少或避免阳光直射、采用室内外遮挡设施等,并应符合现行国家标准《建筑采光设计标准》GB 50033 中控制不舒适眩光的相关规定。

本条的评价方法为: 预评价查阅相关设计文件、计算书; 评价查阅相关竣工图、计算书、采光检测报告。

V 室内热湿环境

- 5.2.10 优化建筑空间和平面布局,改善自然通风效果,评价总分值为 10 分, 并按下列规则评分:
- 1 住宅建筑:通风开口面积与房间地板面积的比例达到5%,得5分;每再增加2%,再得1分,最高得10分。
- 2 公共建筑:根据过渡季典型工况下主要功能房间的平均自然通风换气次数不小于 2 次/h 的面积比例按表 5.2.10 的规则评分。

面积比例 R _R	得分
$70\% \le R_R < 75\%$	5
$75\% \le R_R < 80\%$	6
$80\% \le R_R < 85\%$	7
85%≤R _R <90%	8
90%≤R _R <95%	9
R _R ≥95%	10

表 5.2.10 公共建筑过渡季典型工况下主要功能房间自然通风评分规则

[条文说明]5.2.10 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 8.2.8 条基础上发展而来。对于居住建筑,建筑自然通风能够在过渡季有效的降低空调时间,保证室内舒适度,还能够在夏季的室外条件运行情况下通风降低空调负荷,是建筑节能的一个非常重要的措施。为避免有自然通风要求房间开向室外的自然通风开口面积或开向阳台的自然通风开口面积不够,影响自然通风效果,条文对有自然通风要求房间的直接自然通风开口面积提出了要求;同时为避免设置在有自然通风要求房间外的阳台或封闭阳台的外窗的自然通风开口面积也提出了要求。然通风效果,条文对阳台或封闭阳台外窗的自然通风开口面积也提出了要求。

通过调查发现,山东地区在春、秋季和冬、夏季的某些时段普遍有开窗加强房间通风的习惯,而外窗的可开启面积过小会严重影响建筑室内的自然通风效果。故作出本条规定。

对于公共建筑,针对不容易实现自然通风的区域(例如大进深内区、由于别的原因不能保证开窗通风面积满足自然通风要求的区域)进行了自然通风设计的明显改进和创新,或者自然通风效果实现了明显的改进。保证建筑所有房间在过渡季的典型工况下平

均自然通风换气次数大于2次/h。

本条文达标的途径有两个:

- 1、在过渡季节典型工况下,自然通风房间可开启外窗净面积不得小于房间地板面积的 5%,建筑内区房间若通过邻接房间进行自然通风,其通风开口面积应大于该房间净面积的 8%,且不应小于 2.3m²(数据源自美国 ASHRAE 标准 62.1)。同时,单侧通风房间的进深不超过房间净高的 2.5 倍;为了更好的形成室内穿堂风,房间的进深不宜大于 14m,且不超过房间净高的 5 倍。
- 2、针对不容易实现自然通风的区域(例如大进深内区、由于别的原因不能保证开窗 通风面积满足自然通风要求的区域)进行了自然通风设计的明显改进和创新,或者自然 通风效果实现了明显的改进,保证建筑所有房间在过渡季的典型工况下平均自然通风换 气次数大于 2 次/h。

加强自然通风的建筑在设计时,可采用下列措施:建筑单体采用诱导气流方式,如 导风墙和拔风井等,促进建筑内自然通风;采用数值模拟技术定量分析风压和热压作用 在不同区域的通风效果,综合比较不同建筑设计及构造设计方案,确定最优自然通风系 统设计方案。

本条的评价方法为:预评价查阅建筑户型图、规划设计图等相关设计文件和图纸,以及自然通风模拟分析报告;评价查阅相关竣工图纸,并现场检查。

- 5.2.11 具有良好的室内热湿环境,评价总分值为8分,并按下列规则评分:
- 1 采用自然通风或复合通风的建筑,建筑主要功能房间室内热环境参数在适应性热舒适区域的时间比例,达到 30%,得 2 分;每再增加 10%,再得 1 分,最高得 8 分。
- 2 采用人工冷热源的建筑,主要功能房间达到现行国家标准《民用建筑室内 热湿环境评价标准》GB/T 50785 规定的室内人工冷热源热湿环境整体评价Ⅱ级的 面积比例,达到 60%,得 5 分,每再增加 10%,再得 1 分,最高得 8 分。

[条文说明]5.2.11 本条适用于各类民用建筑的预评价、评价。

本条为新增条文。

第1款,对于采用自然通风或复合通风的建筑,本条款以建筑物内主要功能房间或 区域为对象,以全年建筑运行时间为评价时间范围,按主要功能房间或区域的面积加权 计算满足适应性热舒适区间的时间百分比进行评分。该条款关注的是建筑适应性热舒适 设计,强调建筑中人不是环境的被动接受者,而是能够进行自我调节的适应者,人们会通过改变着装、行为或逐步调整自己的反应以适应复杂的环境变化,从而接受较大范围的室内温度。此外,营造动态而非恒定不变的室内环境,有利于维持人体对热环境的应激能力,改善使用者舒适感与身体健康。本条款要求从动态热环境和适应性热舒适角度,对室内热湿环境进行设计优化,强化自然通风、复合通风,合理拓宽室内热湿环境设计参数,鼓励设计中允许室内人员对外窗、风扇等装置进行自由调节。

第2款,人工冷热源热湿环境整体评价指标应包括预计平均热感觉指标(PMV)和预计不满意者的百分数(PPD),PMV-PPD的计算程序应按国家标准《民用建筑室内热湿环境评价标准》GB/T50785-2012附录E的规定执行。本款以建筑物内主要功能房间或区域为对象,以达标面积比例为评价依据。

对于同时存在自然通风、复合通风和人工冷源的建筑,应分别计算不同功能房间室内热环境对应第1、2款的达标情况,按面积加权进行评分。

本条的评价方法为: 预评价查阅相关设计文件、计算分析报告; 评价查阅相关竣工 图、计算分析报告。

5.2.12 设置可调节遮阳设施,改善室内热舒适,评价总分值为 7 分,根据可调节遮阳设施的面积占外窗透明部分的比例按表 5.2.12 的规则评分。

可调节遮阳设施的面积占外窗透明部分比例		
$25\% \leq S_z < 35\%$	1	
$35\% \leq S_z < 45\%$	3	
$45\% \leq S_z < 55\%$	5	
S _z ≥55%		

表 5.2.12 可调节遮阳设施的面积占外窗透明部分比例评分规则

[条文说明]5.2.12 本条适用于各类民用建筑的预评价、评价。

本条在本标准2017年版第5.2.4条基础上发展而来。

本条所述的可调节遮阳设施包括活动外遮阳设施(含电致变色玻璃)、中置可调遮阳设施(中空玻璃夹层可调内遮阳)、固定外遮阳(含建筑自遮阳)加内部高反射率(全波段太阳辐射反射率大于0.50)可调节遮阳设施、可调内遮阳设施等。

遮阳设施的面积占外窗透明部分比例 S。按下式计算:

$$S_{z} = S_{z0} * \eta \tag{2}$$

式中: η ——遮阳方式修正系数,对于活动外遮阳设施, η 为 1.2;对于中置可调遮阳设施, η 为 1;对于固定外遮阳加内部高反射率可调节遮阳设施, η 为 0.8;对于可调内遮阳设施, η 为 0.6:

S₂₀—遮阳设施应用面积比例。活动外遮阳、中置可调遮阳和可调内遮阳设施,可直接取其应用外窗的比例,即装置遮阳设施外窗面积占所有外窗面积的比例;对于固定外遮阳加内部高反射率可调节遮阳设施,按大暑日 9:00-17:00 之间所有整点时刻其有效遮阳面积比例平均值进行计算,即该期间所有整点时刻其在所有外窗的投影面积占所有外窗面积比例的平均值。

对于按照大暑日 9:00-17:00 之间整点时刻没有阳光直射的透明围护结构,不计入计算。

本条的评价方法为: 预评价查阅相关设计文件、产品说明书、计算书; 评价查阅相 关竣工图、产品说明书、计算书。

6 生活便利

6.1 控制项

6.1.1 建筑及场地设计应满足无障碍要求。

[条文说明]6.1.1 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 4.2.9 条基础上发展而来。

无障碍设计是充分体现和保障不同需求使用者人身安全和心理健康的重要的设计内容,是提高人民生活质量,确保不同需求的人能够出行便利、安全地使用各种设施的基本保障。

场地内各主要游憩场所、建筑出入口、服务设施及城市道路之间要形成连贯的无障碍步行路线。同时建筑的道路、绿地、停车位、出入口、门厅、走廊、楼梯、电梯、厕所等建筑室内外公共区域均应方便老年人、行动不便者及儿童等人群的通行和使用,应按照现行国家标准《无障碍设计规范》GB50763的规定配置无障碍设施并尽可能实现场内的城市街道、室外活动场所、停车场所、各类建筑出入口和公共交通站点之间步行系统的无障碍联通。无障碍系统应保持连续性如建筑场地的无障碍步行道应连续铺设,不同材质的无障碍步行道交接处应避免产生高差,所有存在高差的地方均应设置坡道,并应与建筑场地外无障碍系统连贯连接。住宅建筑内的电梯不应平层错位。建筑室内有高差的地方,也应设置坡道方便轮椅上下。

本条的评价方法为: 预评价查阅相关设计文件; 评价查阅相关竣工图。

6.1.2 场地人行出入口 500m 内应设有公共交通站点或配备联系公共交通站点的专用接驳车。

[条文说明]6.1.2 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 4.2.8 条基础上发展而来。绿色建筑应首先满足使用者绿色出行的基本要求。本条以人步行到达公共交通站点(含轨道交通站点)的适宜时间不应超过 10min 作为公共交通站点设置的合理距离,强调了建筑 500m 范围内应设置公共交通站点,这也是促进公共交通出行的先决条件。有些项目因地处新建区,暂时未开通公交达不到本条要求的,应配备专用接驳车联系公共交通站点,并在场地内设置定时定点的车站和站牌,以保障公交出行的便捷性。

本条的评价方法为: 预评价查阅相关设计文件、交通站点标识图; 评价查阅相关竣工图。

6.1.3 停车场应具有电动汽车充电设施或具备充电设施的安装条件,并应合理设置电动汽车和无障碍汽车停车位。

[条文说明]6.1.3 本条适用于各类民用建筑的预评价、评价。

本条为新增条文。为贯彻落实国家发展改革委、国家能源局、工业与信息化部、住房城乡建设部《电动汽车充电基础设施和发展指南(2015----2020)》的要求,满足电动汽车发展的需求,本条也明确了绿色建筑配建停车场(库)应具备电动汽车充电设施或安装条件。电动汽车充电基础设施建设,应纳入工程建设预算范围、随工程统一设计与施工完成直接建设或做好预留。电动汽车停车位数量至少应达到当地相关规定要求,配置条件应按新建住宅配建停车位数量,100%建设充电设施或预留建设安装条件,为各种充电设施(充电桩、充电站等)提供接入条件。

预留条件的充电车位,至少应预留外电源管线、变压器容量、一级配电应预留低压柜安装空间、干线电缆敷设条件,第二级配电应预留区域总箱的安装空间与接入系统位置和配电支路电缆敷设条件,以便按需建设充电设施。

同时,根据现行国家标准《无障碍设计规范》GB 50763 对不同场所无障碍停车的要求,对于居住区,居住区停车场和车库的总停车位应设置不少于 0.5% 的无障碍机动车停车位,若设有多个停车场和车库,宜每处设置不少于 1 个无障碍机动车停车位;对于公共建筑,建筑基地内总停车数在 100 辆以下时应设置不少于 1 个无障碍机动车停车位,100 辆以上时应设置不少于总停车数 1% 的无障碍机动车停车位。本条要求停车场应合理设置电动洗车和无障碍汽车停车位。

本条的评价方法为:预评价查阅相关设计文件;评价查阅相关竣工图。

6.1.4 非机动车停车场所应位置合理、方便出入,且有遮阳防雨措施。

[条文说明]6.1.4 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 4.2.10 条基础上发展而来。本条为使用非机动车出行的人提供方便的停车场所,以此鼓励绿色出行。非机动车停车场所应规模适度、布局合理,符合使用者出行习惯。非机动车停车设施设置于地面时宜有遮阳防雨措施;设置于地下车库内时,其出入口等要求应满足《车库建筑设计规范》JGJ100 等现行相关规范要求,并符合使用者出行习惯。

本条的评价方法为: 预评价查阅相关设计文件: 评价查阅相关竣工图。

6.1.5 建筑设备监控系统设置合理且正常工作。

[条文说明]6.1.5 本条适用于各类民用建筑的预评价、评价。可不设置建筑设备监控系统的建筑,本条直接通过。

本条在本标准 2017 年版第 10.1.5 条基础上发展而来。本条旨在通过完善和落实建筑设备监控系统的自动监控管理功能,确保建筑物的高效运营管理。但不同规模、不同功能的建筑项目是否需要设置以及需设置的系统大小应根据实际情况合理确定,规范设置。比如当公共建筑的面积不大于 2 万平方米或住宅建筑面积不大于 10 万平方米时,对于其公共设施的监控可以不设建筑设备监控系统,但应设置简易的节能控制措施,如对风机水泵的变频控制、不联网的就地控制器、简单的单回路反馈控制等,也都能取得良好的效果。但采用水系统中央空调的大型公共建筑应设置建筑设备管理系统。为确保建筑高效运营管理、建筑设备管理系统的自动监控管理功能应能实现对主要设备的有效监控。

本条的评价方法为:预评价查阅相关设计文件(智能化设计图纸、装修图纸);评价查阅相关竣工图、系统验收报告,冬、季夏季工况的运行数据记录。各项功能满足国家标准《智能建筑设计标准》GB 50314 要求。

6.1.6 建筑应合理设置信息网络系统。

[条文说明]6.1.6 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 10.2.8 条基础上发展而来。本条旨在通过信息网络系统为建筑使用者提供高效便捷的服务功能。为保证建筑的安全、高效运营,应根据现行国家标准《智能建筑设计标准》GB 50314 和现行行业标准《居住区智能化系统配置与技术要求》CJ/T 174, 设置合理、完善的信息网络系统。建筑内的信息网络系统一般分为外网、内部业务信息网和智能化设施信息网,包括物理线缆层、网络交换层、安全及安全管理系统、运行维护管理系统五部分,支持建筑内语音、数据、图像等多种类信息的传输。网络设置应满足建筑物功能需求。系统和信息的安全,是系统正常运行的前提,一定要保证。建筑内信息网络系统与建筑物外其他信息网互联时,必须采取信息安全防范措施,确保信息网络系统安全、稳定和可靠。住宅建筑信息网络布线应满足国家标准《住宅区和住宅建筑内光纤到户通信设施工程设计规范》 GB 50846 要求。

本条的评价方法为:预评价查阅相关设计文件(智能化、装修专业);评价查阅相关竣工图。

6.2 评分项

I 出行与无障碍

- 6.2.1 场地与公共交通站点联系便捷,评价总分值为8分,并按下列规则分别评分并累计:
- 1 场地出入口到达公共交通站点的步行距离不超过 500m,或到达轨道交通站的步行距离不大于 800m,得 2 分;场地出入口到达公共交通站点的步行距离不超过 300m,或到达轨道交通站的步行距离不大于 500m,得 4 分;
- 2 场地出入口步行距离 800m 范围内设有不少于 2 条线路的公共交通站点, 得 4 分。

[条文说明]6.2.1 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 4.2.8 条基础上发展而来。优先发展公共交通是缓解城市 交通拥堵问题的重要措施,因此建筑与公共交通联系的便捷程度很重要。本条所指公共 交通站点包括公共汽车站和轨道交通站。为便于选择公共交通出行,在选址与场地规划 中应重视建筑场地与公共交通站点的便捷联系,合理设置出入口。

本条的评价方法为: 预评价查阅相关设计文件; 评价查阅相关竣工图。

- 6.2.2 建筑室内外公共区域满足全龄化设计要求,评价总分值为8分,并按下列规则分别评分并累计:
- 1建筑室内公共区域的墙、柱等处的阳角均为圆角,并设有安全抓杆或扶手,得4分:
 - 2设有可容纳担架的无障碍电梯,得4分。

[条文说明]6.2.2 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 4.2.9 条基础上发展而来。为老年人、行动不便者提供活动场地及相应的服务设施和方便、安全的无障碍的出行环境,营造全龄友好的生活居住环境是城市建设不容忽略的重要问题。

- 1 建筑的公共区域充分考虑墙面或者易接触面不应有明显棱角或尖锐突出物,从安全角度考虑做成圆角,并设有安全抓杆或扶手,保证使用者,特别是行动不便的老人、 残疾人、儿童行走安全。
 - 2 在电梯的设计中,可容纳担架的电梯能保证建筑使用者出现突发病症时,更方便

地利用垂直交通。

本条的评价方法为: 预评价查阅相关设计文件 (建筑专业、景观专业); 评价查阅相关竣工图。

II 服务设施

- 6.2.3 提供便利的公共服务,评价总分值为10分,并按下列规则评分:
 - 1 住宅建筑,满足下列要求中的 4 项,得 5 分;满足 6 项及以上,得 10 分。
 - 1) 场地出入口到达幼儿园的步行距离不大于 300m;
 - 2) 场地出入口到达小学的步行距离不大于 500m;
 - 3) 场地出入口到达中学的步行距离不大于 1000m;
 - 4) 场地出入口到达医院的步行距离不大于 1000m:
 - 5) 场地出入口到达群众文化活动设施的步行距离不大于 800m;
 - 6)场地出入口到达老年人日间照料设施(托老所)的步行距离不大于 500m;
 - 7) 场地周边 500m 范围内具有不少于 3 种商业服务设施。
 - 2公共建筑,满足下列要求中的3项,得5分;满足5项,得10分。
 - 1) 建筑内至少兼容 2 种面向社会的公共服务功能;
 - 2) 建筑向社会公众提供开放的公共活动空间:
- 3) 电动汽车充电桩的车位数占总车位数的比例不低于 10%; 大型公共建筑物配建的停车场充电设施或预留建设安装条件的车位占总车位数的比例不低于 15%;
 - 4) 周边 500m 范围内设有社会公共停车场 (库);
 - 5)场地不封闭或场地内步行公共通道向社会开放。

[条文说明]6.2.3 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 4.2.11 条基础上发展而来。本标准与现行国家标准《城市居住区规划设计标准》 GB50180 进行了对接,居住区的配套设施是指对应居住区分级配套规划建设,并与居住人口规模或住宅建筑面积规模相匹配的生活服务设施;主要包括公共管理与公共服务设施、商业服务业设施、市政公用设施、交通场站及社区服务设施、便民服务设施。本条选取了居民使用频率较高或对便利性要求较高的配套设施进行评价,突出步行可达的便利性设计原则。本次修订特别增加了医院、各类群众文化活动

设施、老年人日间照料中心(托老所)等公共服务设施的评价内容,强化了对公共服务水平的评价。其中医院含卫生服务中心、社区医院,群众文化活动设施含文化馆、文化宫、文化活动中心、老年人或儿童活动中心等。

公共建筑兼容 2 种及以上主要公共服务功能是指主要服务功能在建筑内部混合布局,如建筑中设有共用的会议设施、展览设施、健身设施、餐饮设施等以及交往空间、休息空间等空间,提供休息座位、家属室、母婴室、活动室等人员停留、沟通交流、聚集活动等与建筑主要使用功能相适应的公共空间。

公共服务功能设施向社会开放共享的方式也具有多种形式,可以全时开放,也可根据自身使用情况错时开放。例如文化活动中心、图书馆、体育运动场、体育馆等,通过科学管理错时向社会公众开放;办公建筑的室外场地、停车库等在非办公时间向周边居民开放,会议室等向社会开放等。设定电动汽车充电桩的车位数占总车位数的比例,是适应电动汽车发展的必要措施。周边 500m 范围内设有社会公共停车场 (库),也是对社会设施共享共用、建筑使用者出行便捷性的重要评价内容。本次修订还增加了城市步行公共通道等评价内容,以提高和保障城市公共空间步行系统的完整性和连续性,一方面为城市居民的出行提供便利、提高通达性,另一方面也是绿色建筑使用者出行便利的重要评价内容。

本条的评价方法为: 预评价查阅相关设计文件、位置标识图; 评价查阅相关竣工图, 投入使用的项目尚应查阅设施向社会共享的实施方案、工作记录等。

- 6.2.4 城市绿地、广场及公共运动场地等开敞空间,步行可达,评价总分值为 5分,并按下列规则分别评分并累计:
- 1 场地出入口到达居住区公园或城市公园绿地、广场的步行距离不大于 300m, 得 3 分;
 - 2 到达中型多功能运动场地的步行距离不大于 500m, 得 2 分。
 - [条文说明]6.2.4 本条适用于各类民用建筑的预评价、评价。

本条为新增条文。强调了城市公共开敞空间、运动场所的便捷性、可达性。

第1款,建筑以主要出入口步行300m即可到达任何1个城市公园绿地、城市广场进行得分评价,其中住宅建筑还包括居住区公园;

第2款,提出步行500m应能够到达1处中型多功能运动场地(大约1300 m² 2500 m²,集中设置了篮球、排球、5人足球的运动场地),或是其他对外开放的专用运动场,

如学校对外开放的运动场。符合《中共中央国务院关于进一步加强城市规划建设管理工作的若干意见》提出的"合理规划建设广场、公园、步行道等公共活动空间,方便居民文体活动,促进居民交流。强化绿地服务群众日常活动的功能,使市民在居家和工作附近能够见到绿地、亲近绿地"的要求。

本条的评价方法为: 预评价查阅相关设计文件、位置标识图: 评价查阅相关竣工图。

- 6.2.5 合理设置健身场地和空间,评价总分值为 10 分,并按下列规则分别评分并累计:
 - 1室外健身场地面积不少于总用地面积的 0.5%, 得 3 分;
- 2 设置宽度不少于 1.25m 的专用健身慢行道,健身慢行道长度不少于用地红线周长的 1/4 且不少于 100m,得 2 分;
 - 3室内健身空间的面积不少于地上建筑面积的 0.3%且不少于 60m², 得 3分;
- 4 楼梯间具有天然采光和良好的视野,且距离主入口的距离不大于 15m, 得 2分。

[条文说明]6.2.5 本条适用于各类民用建筑的预评价、评价。

本条为新增条文。随着人们对健康生活的重视,人们对健身活动越来越热衷。健身活动有利于人体骨儒、肌肉的生长,增强心肺功能,改善血液循环系统、呼吸系统、消化系统的机能状况,有利于人体的生长发育,提高抗病能力,增强有机体的适应能力。 室外健身可以促进人们更多的接触自然,提高对环境的适应能力,也有益于心理健康,对保障人体健康具有重要意义。

- 1 要求设置集中的室外健身活动区。《城市社区多功能公共运动场配置要求》GB/T 34419-2017 提出充分考虑社区所在地的气候、人文和民族特点,选择设置当地群众喜爱的体育项目。《城市居住区规划设计标准》GB 50180-2018 提出室外综合健身场地的设置要求;健身场地的设置位置应避免噪声扰民,并根据运动类型设置适当的隔声措施;健身场地设置应进行全龄化的设计,满足各年龄段人群的室外活动要求。
- 2 健身慢行道是指在场地内设置的供人们进行行走、慢跑的专门道路。健身慢行道 应尽可能避免与场地内车行道交叉,步道宜采用弹性减振、防滑和环保的材料,如塑胶、 彩色陶粒等。步道宽度不少于 1.25m,源、自原建设部以及原国土资源部联合发布的《城 市社区体育设施建设用地指标》的要求。
 - 3 鼓励建筑或社区中可设置健身房,或利用公共空间(如小区会所、入口大堂、休

闲平台、共享空间等)设置健身区,配置一些健身器材,提供给人们全天候进行健身活动的条件,鼓励积极健康的生活方式。健康空间还包括开放共享的羽毛球室、乒乓球室。

4 楼梯间作为建筑的日常使用、应急疏散等功能外,从便于锻炼角度考虑,要求单体建筑至少有一部楼梯间内有天然采光、有良好的视野、充足的照明和人体感应装置,可提高楼梯间锻炼的舒适度;且设置在靠近主入口不大于15米的地方,可以方便人员主动选择走楼梯的健康出行方式。

本条的评价方法为: 预评价查阅相关设计文件、场地布置图, 产品说明书; 评价查阅相关竣工图、产品说明书。

Ⅲ 智慧运行

6.2.6 设置分类、分级用能自动远传计量系统,且设置能源管理系统实现对建筑能耗的监测、数据分析和管理,评价分值为 8 分。

[条文说明]6.2.6 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 5.1.3 条基础上发展而来。本条旨在保障且体现绿色建筑达到预期的运营效果,建筑至少应对建筑最基本的能源资源消耗量设置管理系统。但不同规模、不同功能的建筑项目需设置的系统大小及是否需要设置应根据实际情况合理确定。本条要求设置电、气、热的能耗计量系统和能源管理系统。计量系统是实现运行节能、优化系统设置的基础条件,能源管理系统使建筑能耗可知、可见、可控,从而达到优化运行、降低消耗的目的。冷热源、输配系统和电气等各部分能源应进行独立分项计量,并能实现远传,其中冷热源、输配系统的主要设备包括冷热水机组、冷热水泵、新风机组、空气处理机组、冷却塔等,电气系统包括照明、插座、动力等。对于住宅建筑,主要针对公共区域提出要求,对于住户仅要求每个单元(或楼栋)设置可远传的计量总表。计量器具应满足现行国家标准《用能单位能源计量器具配备和管理通则》GB 17167 中的要求。

本条要求在计量基础上,通过能源管理系统实现数据传输、存储、分析功能,系统 可存储数据均应不少于一年。

本条的评价方法为:预评价查阅相关设计文件(能源系统设计图纸、能源管理系统配置等);评价查阅相关竣工图、产品型式检验报告,投入使用的项目尚应查阅管理制度、历史监测数据、运行记录。

6.2.7 设置空气质量监控系统,具有监测 PM_{10} 、 $PM_{2.5}$ 、 CO_2 浓度等功能,且具有存储至少一年的监测数据和实时显示等功能,评价分值为 5 分。

[条文说明]6.2.7 本条适用于各类民用建筑的预评价、评价。

本条标准在本标准 2017 年版第 8.2.10 条基础上发展而来。旨在引导保持理想的室内空气质量指标,必须不断收集建筑室内空气质量测试数据。空气污染物传感装置和智能化技术的完善普及,使对建筑内空气污染物的实时监控成为可能。当所监测的空气质量便宜理想阈值时,系统应作出警示,建筑管理方应对可能影响这些指标的系统作出及时的调试和调整。将监测发布系统与建筑内空气质量调控设备组成自动控制系统,可实现室内环境的智能化调控,在维持建筑室内环境健康舒适的同时减少不必要的能源消耗。本条文要求对于安装监控系统的建筑,系统应满足对 PM₁₀、PM₂₅、CO₂分别进行定时连续测量、显示、记录和数据传输的功能。监测系统对污染物浓度的读书时间间隔不得长于10min。

选择 PM_{10} 、 PM_{25} 、 CO_2 三个具有代表性和指示性的室内空气污染物指标进行监测并进行室内空气表观质量指数的发布。其中 CO_2 除可以直接反映室内污染物浓度情况外,还可作为标志物间接反映建筑新风量及空气置换效果。

本条的评价方法为:预评价查阅相关设计文件(监测系统设计图纸、点位图等);评价查阅相关竣工图、产品型式检验报告,投入使用的项目尚应查阅管理制度、历史监测数据、运行记录。

- **6.2.8** 设置用水远传计量系统、水质在线监测系统,评价总分值为 7 分,并按下列规则分别评分并累计:
- 1 设置用水量远传计量系统,能分类、分级记录、统计分析各种用水情况,得3分:
- 2 利用计量数据进行管网漏损自动检测、分析与整改,管道漏损率低于 5%,得 2分;
- 3 设置水质在线监测系统,监测生活饮用水、管道直饮水、游泳池水、非传统水源、空调冷却水的水质指标,记录并保存水质监测结果,且能随时供用户查询,得2分。

[条文说明]6.2.8 本条适用于各类民用建筑的预评价、评价。 本条为新增条文。 第1款,采用远传计量系统对各类用水进行计量,可准确掌握项目用水现状,如水系管网分布情况,各类用水设备、设施、仪器、仪表分布及运转状态,用水总量和各用水单元之间的定量关系,找出薄弱环节和节水潜力,制定出切实可行的节水管理措施和规划。

第2款,远传水表可以实时的将用水量数据上传给管理系统。远传水表应根据水平 衡测试的要求分级安装。物业管理方应通过远传水表的数据进行管道漏损情况检测,随 时了解管道漏损情况,及时查找漏损点并进行整改。

第3款,建筑中设有的各类供水系统均设置了在线监测系统,第3款方可得分。根据相应水质标准规范要求,可选择对浊度、余氯、pH值、电导率CTDS)等指标进行监测,例如管道直饮水可不监测浊度、余氯,对终端直饮水设备没有在线监测的要求。对建筑内各类水质实施在线监测,能够帮助物业管理部门随时掌握水质指标状况,及时发现水质异常变化并采取有效措施。水质在线监测系统应有报警记录功能,其存储介质和数据库应能记录连续一年以上的运行数据,且能随时供用户查询。水质监测的关键性位置和代表性测点包括:水源、水处理设施出水及最不利用水点。

本条的评价方法为:预评价查阅相关设计文件(含远传计量系统设置说明、分级水表设置示意图、水质监测点位说明、设置示意图等);评价查阅相关竣工图(含远传计量系统设置说明、分级水表设置示意图、水质监测点位说明、设置示意图等)、监测与发布系统设计说明,投入使用的项目尚应查阅漏损检测管理制度(或漏损检测、分析及整改情况报告)、水质监测管理制度(或水质监测记录)。

- 6.2.9 具有智能化服务系统,评价总分值为 9 分,并按下列规则分别评分并累计:
- 1 具有室内电器控制、照明控制、安全报警、环境监测、建筑设备控制、工作生活服务等至少 3 种类型的服务功能,得 3 分;
 - 2 具有远程监控的功能,得3分;
 - 3 具有接入智慧城市(城区、社区)的功能,得3分。

[条文说明]6.2.9 本条适用于各类民用建筑的预评价、评价。

本条为新增条文。

第1款,智能化服务系统包括智能家居监控服务系统或智能环境设备监控服务系统, 具体包括室内电器控制、照明控制、安全报警、环境监测、建筑设备控制、工作生活服 务(如养老服务预约、会议预约)等系统与平台。控制方式包括电话或网络远程控制、室内外遥控、红外转发以及可编程定时控制等。智能家居监控系统主要考核安全报警、环境监测和生活服务,室内电器控制主要是指公共建筑主要功能房间的空调(末端)、饮水机等用电设备,建筑设备控制是指水泵、新风机组、排风机等公共设施的控制。

第2款,智能化服务系统具备远程监控功能,使用者可通过以太网、移动数据网络等,实现对建筑室内物理环境状况、设备设施状态的监测,以及对智能家居或环境设备系统的控制、对工作生活服务平台的访问操作,从而可以有效提升服务便捷性。

第3款,智能化服务系统如果仅由物业管理单位来管理和维护的话,其信息更新与扩充的速度和范围一般会受到局限,如果智能化服务平台能够与所在的智慧城市(城区、社区)平台对接,则可有效实现信息和数据的共享与互通,实现相关各方的互惠互利。智慧城市(城区、社区)的智能化服务系统的基本项目一般包括智慧物业管理、电子商务服务、智慧养老服务、智慧家居、智慧医院等。

本条的评价方法为:预评价查阅相关设计文件(智能家居或环境设备监控系统设计方案、智能化服务平台方案、相关智能化设计图纸、装修图纸);评价查阅相关竣工图、产品型式检验报告,投入使用的项目尚应查阅管理制度、历史监测数据、运行记录。

IV 物业管理

- 6.2.10 制定完善的节能、节水、节材、绿化的操作规程、应急预案,实施能源资源管理激励机制,且有效实施,评价总分值为 5 分,并按下列规则分别评分并累计:
 - 1 相关设施具有完善的操作规程和应急预案,得2分;
- 2 物业管理机构的工作考核体系中包含节能和节水绩效考核激励机制,得3分。

[条文说明]6.2.10 本条适用于各类民用建筑的评价。在项目投入使用前评价,本条不得分。

本条在本标准2017年版第10.2.2条、第10.2.3条基础上发展而来。

第1款,要求建立完善的节能、节水、节材、绿化的操作管理制度、工作指南和应 急预案,并放置、悬挂或张贴在各个操作现场的明显处。例如:可再生能源系统操作规 程、雨废水回用系统作业标准等。节能、节水设施的运行维护技术要求高,维护的工作 量大,无论是自行运维还是购买专业服务,都需要建立完善的管理制度及应急预案,并在日常运行中应做好记录,通过专业化的物理管理促使操作人员有效保证工作的质量。

第2款,要求物业管理机构在保证建筑的使用性能要求、投诉率低于规定值的前提下,实现其经济效益与建筑用能系统的耗能状况、水资源等的使用情况直接挂钩。在运营管理中,建筑运行能耗可参考现行国家标准《民用建筑能耗标准》GB/T51161 制定激励政策,建筑水耗可参考现行国家标准《民用建筑节水设计标准》GB50555 制定激励政策。通过绩效考核、调动各方面的节能、节水积极性。

本条的评价方法为:评价查阅相关管理制度、操作规程、应急预案、运行记录。

- 6.2.11 建筑平均日用水量满足现行国家标准《民用建筑节水设计标准》GB 50555 中节水用水定额的要求,评价总分值为 5 分,并按下列规则评分:
 - 1 平均日用水量大于节水用水定额的平均值、不大于上限值,得2分。
 - 2 平均日用水量大于节水用水定额下限值、不大于平均值,得3分。
 - 3 平均日用水量不大于节水用水定额下限值,得5分。

[条文说明]6.2.11 本条适用于各类民用建筑的评价。在项目投入使用前评价,本条不得分。

本条由本标准 2017 年版第 6.2.1 条发展而来。计算平均日用水量时,应实事求是地确定用水的使用人数、用水面积等。使用人数在项目使用初期可能不会达到设计人数,如住宅的入住率可能不会很快达到 100%, 因此对与用水人数相关的用水,如饮用、盟洗、冲厕、餐饮等,应根据用水人数来计算平均日用水量;对使用人数相对固定的建筑,如办公建筑等,按实际人数计算;对浴室、商场、餐厅等流动人口较大且数量无法明确的场所,可按设计人数计算。对与用水人数无关的用水,如绿化灌溉、地面冲洗、水景补水等,则根据实际水表计量情况进行考核。

根据实际运行一年的水表计量数据和使用人数、用水面积等计算平均日用水量,与 节水用水定额进行比较来判定。本条的平均值为现行国家标准《民用建筑节水设计标准》 GB50555 中上限值和下限值的算术平均值。

本条的评价方法为:评价查阅实测用水量计量报告和建筑平均日用水量计算书。

- 6.2.12 定期对建筑运营效果进行评估,并根据结果进行运行优化,评价总分值为12分,并按下列规则分别评分并累计:
 - 1 制定绿色建筑运营效果评估的技术方案和计划,得3分;

- 2 定期检查、调适公共设施设备,具有检查、调试、运行、标定的记录, 且记录完整,得3分:
 - 3 定期开展节能诊断评估,并根据评估结果制定优化方案并实施,得4分;
 - 4 定期对各类用水水质进行检测、公示,得2分。

[条文说明]6.2.12 本条适用于各类民用建筑的评价。在项目投入使用前评价,本条不得分。

本条在本标准 2017 年版第 10.2.5 条、10.2.7 条基础上发展而来。

第1款,对绿色建筑的运营效果进行评估是及时发现和解决建筑运营问题的重要手段,也是优化绿色建筑运行的重要途径。绿色建筑涉及的专业面广,所以制定绿色建筑运营效果评估技术方案和评估计划,是评估有序和全面开展的保障条件。根据评估结果,可发现绿色建筑是否达到预期运行目标,进而针对发现的运营问题制定绿色建筑优化运营方案,保持甚至提升绿色建筑运行效率和运营效果。

第2款,保持建筑及其区域的公共设施设备系统、装置运行正常,做好定期巡检和维保工作,是绿色建筑长期运行管理中实现各项目标的基础。制定的管理制度、巡检规定、作业标准及相应的维保计划是保障使用者安全、健康的基本保障。定期的巡检包括:公共设施设备(管道井、绿化、路灯、外门窗等)的安全、完好程度、卫生情况等;设备间(配电室、机电系统机房、泵房)的运行参数、状态、卫生等;消防设备设施(室外消防栓、自动报警系统、灭火器)等完好程度、标识、状态等;建筑完损等级评定(结构部分的墙体,楼盖,楼地面、幕墙,装修部分的门窗,外装饰、细木装修,内墙抹灰)的安全检测、防锈防腐等,以上内容还应做好归档和记录。

系统、设备、装置的检查、调适不仅限于新建建筑的试运行和竣工验收,而应是一项持续性、长期性的工作。建筑运行期间,所有与建筑运行相关的管理、运行状态,建筑构件的耐久性、安全性等会随时间、环境、使用需求调整而发生变化,因此持续到位的维护特别重要。

第3款,物业管理机构有责任定期 (每年)开展能源诊断。住宅类建筑能源诊断的内容主要包括:能耗现状调查、室内热环境和暖通空调系统等现状诊断。住宅类建筑能源诊断检测方法可参照现行行业标准《居住建筑节能检测标准》JGJ/T132的有关规定。公共建筑能源诊断的内容主要包括:冷水机组、热泵机组的实际性能系数、锅炉运行效率、水泵效率、水系统补水率、水系统供回水温差、冷却塔冷却性能、风机单位风量耗

功率、风系统平衡度等,公共建筑能源诊断检测方法可参照现行行业标准《公共建筑节能检测标准》JGJ/T177的有关规定。

第 4 款,水质的检测应按现行国家标准《生活饮用水标准检验方法 总则》GB/T 5750.1、《生活饮用水标准检验方法 放射性指标》GB/T 5750.13、现行行业标准《城镇供水水质标准检验方法》CJ/T141 等标准执行,并保证至少每季度对各类用水水质的常规指标进行1次检测。

对于第3款和第4款,能源诊断和水质检测可由物业管理部门自检,或委托具有资质的第三方检测机构进行定期检测。物业管理部门应保存历年的能源和水质检测记录,并至少提供最近一年完整机电系统作业标准、各类检测器的标定记录、运行数据或第三方检测的数据等资料,不断提升设备系统的性能。

本条的评价方法为:评价查阅相关管理制度、年度评估报告、历史监测数据、运行记录、检测报告、诊断报告。

- 6.2.13 建立绿色教育宣传和实践机制,编制绿色设施使用手册,形成良好的绿色氛围,并定期开展使用者满意度调查,评价总分值为8分,并按下列规则分别评分并累计:
- 1 每年组织不少于 2 次的绿色建筑技术宣传、绿色生活引导、灾害应急演练等绿色教育宣传和实践活动,并有活动记录,得 2 分;
- 2 具有绿色生活展示、体验或交流分享的平台,并向使用者提供绿色设施 使用手册,得3分;
- 3 每年开展 1 次针对建筑绿色性能的使用者满意度调查,且根据调查结果制定改进措施并实施、公示,得 3 分。

[条文说明]6.2.13 本条适用于各类民用建筑的评价。在项目投入使用前评价,本条不得分。

本条在本标准 2017 年版第 10.2.4 条基础上发展而来。在建筑物长期的运行过程中,用户和物业管理人员的意识与行为,直接影响绿色建筑的目标实现,因此需要坚持倡导绿色理念与绿色生活方式的教育宣传制度,培训各类人员正确使用绿色设施,形成良好的绿色行为与风气。

第1款,建立绿色教育宣传和实践活动机制,可以促进普及绿色建筑知识,让更多的人了解绿色建筑的运营理念和有关要求。尤其是通过媒体报道和公开有关数据,能营

造关注绿色理念、践行绿色行为的良好氛围。

第2款,鼓励形式多样的绿色生活展示、体验或交流分享的平台,包括利用实体平台和网络平台的宣传、推广和活动,如建立绿色生活的体验小站、旧物置换、步数绿色积分、绿色小天使亲子活动等。定期发放绿色设施使用于册,绿色设施使用手册是为建筑使用者及物业管理人员提供各类设备设施的功能、作用及使用说明的文件。绿色设施包括建筑设备管理系统、节能灯具、遮阳设施、可再生能源系统、非传统水源系统、节水器具、节水绿化灌溉设施、垃圾分类处理设施等。营造出使用者爱护环境、绿色家园共建的氛围。

第 3 款,建筑应满足建筑使用者的需求,绿色建筑最终应用效果的重要判据之一是建筑使用者的评判和满意度。使用者满意度调查的内容主要针对安全耐久、健康舒适、生活便利、资源节约(侧重节能、节水)、环境宜居的绿色性能,并着重关注物业管理、秩序与安全、车辆管理、公共环境、建筑外墙维护等与建筑使用者。应根据满意度调查结果制定建筑性能提升改进措施并加以落实,尤其针对使用者不太满意的调查内容。

本条的评价方法为:评价查阅相关管理制度、工作记录、活动宣传和推送材料、绿色设施使用于册、影像材料、年度调查报告及整改方案。

7 资源节约

7.1 控制项

7.1.1 应结合场地自然条件和建筑功能需求,对建筑的体形、平面布局、空间尺度、围护结构等进行节能设计,且应符合国家及山东省现行有关节能设计的要求。

[条文说明]7.1.1 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 5.1.1、5.2.1 条的基础上发展而来。

建筑设计时应强化"空间节能优先"原则的重点要求。优化体形、空间平面布局,包括合理控制建筑空调供暖的规模、区域和时间,可以实现对建筑的自然通风和天然采光的优先利用,降低供暖空调照明负荷,降低建筑能耗。

因地制宜是绿色建筑设计首先要考虑的因素,不仅仅需要考虑当地气候条件,其建筑的形体、尺度还需要综合场地周边的传统文化、地方特色统筹协调,建筑物的平面布局应结合场地地形、环境等自然条件制约,并权衡各因素之间的相互关系,通过多方面分析、优化建筑的规划设计。绿色建筑设计还应在综合考虑基地容积率、限高、绿化率、交通等功能因素基础上,统筹考虑冬夏季节节能需求,优化设计体形、朝向和窗墙比。

本条涉及的建筑节能标准,包括现行国家标准《公共建筑节能设计标准》GB 50189、《严寒和寒冷地区居住建筑节能设计标准》JGJ26 及现行山东省工程建设标准《公共建筑节能设计标准》DB37/5026等。

本条的评价方法为: 预评价查阅相关设计文件(总图、建筑鸟瞰图、单体效果图、 人群视点透视图、平立剖图纸、设计说明等)、节能计算书、建筑日照模拟计算报告、优 化设计报告;评价查阅相关竣工图、节能计算书、建筑日照模拟计算报告、优化设计报 告。

- 7.1.2 应采取措施降低部分负荷、部分空间使用下的供暖、空调系统能耗,并 应符合下列规定:
 - 1 应区分房间的朝向细分供暖、空调区域,并应对系统进行分区控制;
- 2 空调冷源的部分负荷性能系数(IPLV)、电冷源综合制冷性能系数(SCOP) 应符合现行山东省工程建设标准《公共建筑节能设计标准》DB37/5155 的规定。

[条文说明]7.1.2 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 5.2.10 条的基础上发展而来。对没有供暖需求的建筑,仅 考虑空调分区。对于采用分体式以及多联式空调的,可认定为满足空调供冷分区要求。

不同朝向、不同的使用时间、不同功能需求(人员设备负荷,室内温湿度要求)的 区域应考虑供暖空调的分区,否则既增加后期运行调控的难度,也带来了能源的浪费。 因此,本条文要求设计应区分房间的朝向,细分供暖、空调区域,应对系统进行分区控制。

空调系统一般按照最不利情况(满负荷)进行系统设计和设备选型,而建筑在绝大部分时间内是处于部分负荷状况的,或者同一时间仅有一部分空间处于使用状态。现行山东省工程建设标准《公共建筑节能设计标准》DB37/5155 已经对空调冷源的部分负荷性能(IPLV) 提出了要求,本条文参照执行。

最终决定空调系统耗电量的是包含空调冷热源、输送系统和空调末端设备在内整个空调系统,整体更优才能达到节能的最终目的。规定空调系统电冷源综合制冷性能系数 (SCOP) 这个参数,保证空调冷源部分的节能设计整体更优。现行山东省工程建设标准《公共建筑节能设计标准》DB37/5155 中对空调系统的电冷源综合制冷性能系数(SCOP) 已提出了要求.本条文参照执行。

本条的评价方法为: 预评价查阅相关设计文件(暖通专业施工图纸及设计说明,要求有控制策略、部分负荷性能系数(IPLV)计算说明、电冷源综合制冷性能系数(SCOP)计算说明): 评价查阅相关竣工图、冷源机组设备说明。

7.1.3 应根据建筑空间功能设置分区温度,合理降低室内过渡区空间的温度设定标准。

[条文说明]7.1.3 本条适用于各类民用建筑的预评价、评价。

本条为新增条文。

避免空调供暖空间全覆盖,或者简单降低夏季空调和提升冬季供暖温度的做法不利于节能。为此本条要求建筑应结合不同的行为特点和功能要求合理区分设定室内温度标准。在保证使用舒适度的前提下,合理设置少用能、不用能空间,减少用能时间、缩小用能空间,通过建筑空间设计达到节能效果。室内过渡空间是指门厅、中庭、高大空间中超出人员活动范围的空间,由于其较少或没有人员停留,可适当降低温度标准,以达到降低供暖空调用能的目的。"小空间保证、大空间过渡"是指在设计高大空间建筑时.

将人员停留区域控制在小空间范围内、大空间部分按照过渡空间设计。

本条的评价方法为: 预评价查阅相关设计文件: 评价查阅相关竣工图、计算书。

7.1.4 主要功能房间的照明功率密度值不应高于现行国家标准《建筑照明设计标准》GB 50034 规定的现行值;公共区域的照明系统应采用分区、定时、感应等节能控制;采光区域的照明控制应独立于其他区域的照明控制。

[条文说明]7.1.4 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 5.1.4 条、第 5.2.12 条和第 5.2.13 条基础上发展而来。

现行国家标准《建筑照明设计标准》GB 50034 规定了各类房间或场所的照明功率密度值,分为"现行值"和"目标值",其中"现行值"是新建建筑必须满足的最低要求,"目标值"要求更高。设计应选用发光效率高、显色性能好、使用寿命长、色温适宜并符合环保要求的灯具。

在建筑的实际运行过程中,照明系统的分区控制、定时控制、自动感应开关、照度调节等措施对降低照明能耗作用很明显。照明系统分区需满足自然光利用、功能和作息差异的要求。功能差异如办公区、走廊、楼梯间、车库等的分区:作息差异一般指日常工作时间、值班时间等的不同。对于公共区域(包括走廊、楼梯间、大堂、门厅、地下停车场等场所)可采取分区、定时、感应等节能控制措施。如楼梯间采取声、光控或人体感应控制:走廊、地下车库可采用定时或其他的集中控制方式。

采光区域的人工照明控制独立于其他区域的照明控制,有利于单独控制采光区的人工照明,实现照明节能。

本条的评价方法为:预评价查阅相关设计文件(包含电气照明系统图、电气照明平面施工图)、设计说明(需包含照明设计要求、照明设计标准、照明控制措施等)、建筑照明功率密度计算分析报告;评价查阅相关竣工图、设计说明(需包含照明设计要求、照明设计标准、照明控制措施等)、建筑照明功率密度检测报告。

7.1.5 冷热源、输配系统和照明等各部分能耗应进行独立分项计量。

[条文说明]7.1.5 本条适用于各类建筑的预评价、评价。

本条在本标准 2017 年版第 5.1.3 条基础上发展而来。

建筑能源消耗情况较为复杂,主要包括空调和供热系统、照明系统、其他动力系统等。设置分项或分功能计量系统,有助于统计各类设备系统的能耗分布,发现能耗不合理之处。

对于公共建筑,要求采用集中冷热源的公共建筑,在系统设计(或既有建筑改造设计)时必须考虑使建筑内各能耗环节如冷热源、输配系统、照明、热水能耗等都能实现独立分项计量;对非集中冷热源的公共建筑,在系统设计(或既有建筑改造设计)时必须考虑使建筑内根据面积或功能等实现分项计量。这有助于分析建筑各项能耗水平和能耗结构是否合理,发现问题并提出改进措施,从而有效地实施建筑节能。

对于住宅建筑, 不要求户内各路用电的单独分项计量, 但应实现分户计量。

本条的评价方法为: 预评价查阅相关设计文件; 评价查阅相关竣工图、分项计量记录。

7.1.6 垂直电梯应采取群控、变频调速或能量反馈等节能措施;自动扶梯应采用变频感应启动等节能控制措施。

[条文说明]7.1.6 本条适用于各类民用建筑的预评价、评价。无电梯和扶梯的建筑, 本条不参评。

本条在本标准2017年版第5.2.14条基础上发展而来。

本条是对电梯系统的节能控制措施的要求。对垂直电梯,应具有群控、变频调速拖动、能量再生回馈等至少一项技术,实现电梯节能。对于扶梯,应采用变频感应启动技术来降低使用能耗。

本条的评价方法为: 预评价查阅相关设计文件、电梯与自动扶梯人流平衡计算分析报告; 评价查阅相关竣工图、相关产品型式检验报告。

- 7.1.7 应制定水资源利用方案,统筹利用各种水资源,并应符合下列规定:
 - 1 按使用用途、付费或管理单元,分别设置用水计量装置;
- 2 用水点处水压大于 0.2MPa 的配水支管应设置减压设施,并应满足给水配件最低工作压力的要求:
 - 3 用水器具和设备应满足节水产品的要求。

[条文说明]7.1.7 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 6.1.1 条、第 6.1.3 条、第 6.2.3 条和第 6.2.4 条基础上发展 而来。

在进行绿色建筑设计前,应充分了解项目所在区域的市政给排水条件、水资源状况、 气候特点等实际情况,通过全面的分析研究,制定水资源利用方案,提高水资源循环利用率,减少市政供水量和污水排放量。

水资源利用方案包含项目所在地气候情况、市政条件及节水政策,项目概况,水量 计算及水平衡分析,给排水系统设计方案介绍,节水器具及设备说明,非传统水源利用 方案等内容。

第1款,按使用用途、付费或管理单元情况分别设置用水计量装置,可以统计各种用水部门的用水量和分析渗漏水量,达到持续改进节水管理的目的。同时,也可以据此施行计量收费,或节水绩效考核,促进行为节水。

第2款,用水器具给水配件在单位时间内的出水量超过额定流量的现象,称超压出流现象,该流量与额定流量的差值,为超压出流量。超压出流量未产生使用效益,为无效用水量,即浪费的水量。给水系统设计时应采取措施控制超压出流现象,应合理进行压力分区,并适当地采取减压措施,避免造成浪费。当选用自带减压装置的用水器具时,该部分管线的工作压力满足相关设计规范的要求即可。当建筑因功能需要,选用特殊水压要求的用水器具时,可根据产品要求采用适当的工作压力,但应选用用水效率高的产品,并在说明中做相应描述。

第 3 款,所有用水器具应满足现行国家标准《节水型产品技术条件与管理通则》GB/T 18870 的要求。除特殊功能需求外,均应采用节水型用水器具。

本条的评价方法为:预评价查阅相关设计文件(含水表分级设置示意图、各层用水 点用水压力计算图表、用水器具节水性能要求)、水资源利用方案及其在设计中的落实说 明;评价查阅相关竣工图、水资源利用方案及其在设计中的落实说明、用水器具产品说 明书或产品节水性能检测报告。

7.1.8 100m 及以下住宅和集中生活热水供应的公共建筑,其太阳能热水系统 应全部按太阳能建筑一体化标准设计、施工、验收。

[条文说明]7.1.8 本条适用于住宅和集中供应热水的公共建筑的预评价、评价。 本条沿用本标准 2017 年版的第 5.1.5 条。

目前我省对太阳能的利用主要体现在安装太阳能热水器,此项技术已比较成熟,应 大力推广应用。在建筑物设计阶段即考虑太阳能利用问题,将太阳能利用技术与建筑结构、先进的建筑节能技术和节能产品等优化组合,不仅可减少日后安装太阳能利用装置带来的建筑物损伤、成本增加等弊端,还可大大提高太阳能利用率。

2019年3月1日起施行的《山东省绿色建筑促进办法》(省政府令第323号)第二十三条规定:新建高度100米以下城镇居住建筑、农村社区以及集中供应热水的公共建

筑,应当安装太阳能热水系统。太阳能热水系统应当与主体工程同步设计、同步施工、同步验收。所以,本条列为控制项。

对于不适宜按太阳能光热建筑一体化标准设计、施工和运营的项目,本条不参评,申请评价方应提供相关技术论证报告等证明材料。

本条的评价方法为:预评价查阅太阳能建筑一体化设计文件;评价查阅相关竣工图, 并现场核实。

7.1.9 不应采用建筑形体和布置严重不规则的建筑结构。

[条文说明]7.1.9 本条适用于各类民用建筑的预评价、评价。

本条在本标准2017年版第7.2.1条发展而来。

形体指建筑平面形状和立面、竖向剖面的变化。绿色建筑设计应重视其平面、立面和竖向剖面的规则性对抗震性能及经济合理性的影响, 优先选用规则的形体。

建筑方案的规则性对建筑结构的抗震安全性来说十分重要。国家标准《建筑抗震设计规范》GB 50011-2010 (2016 年版) 第 3.4.1 条(强制性条文)明确规定"严重不规则的建筑不应采用"。

本条的评价方法为: 预评价查阅相关设计文件(建筑图、结构施工图)、建筑形体规则性判定报告: 评价查阅相关竣工图、建筑形体规则性判定报告。

7.1.10 建筑造型要素应简约,应无大量装饰性构件,并应符合下列规定:

- 1 住宅建筑的装饰性构件造价占建筑总造价的比例不应大于 2%;
- 2 公共建筑的装饰性构件造价占建筑总造价的比例不应大于1%。

[条文说明]7.1.10 本条适用于各类民用建筑的预评价、评价。

本条沿用本标准 2017 年版第 7.1.4 条。

设置大量的没有功能的纯装饰性构件,不符合绿色建筑节约资源的要求。鼓励使用 装饰和功能一体化构件,在满足建筑功能的前提之下,体现美学效果、节约资源。同时, 设置屋顶装饰性构件时应特别注意鞭梢效应等抗震问题。对于不具备遮阳、导光、导风、 载物、辅助绿化等作用的飘板、格栅、构架和塔、球、曲面等装饰性构件,应对其造价 进行控制。为更好地贯彻新时期建筑方针"适用、经济、绿色、美观",兼顾公共建筑尤 其是商业及文娱建筑的特殊性,本次对其装饰性构件造价比定为不应大于1%。

本条的评价方法为:预评价查阅相关设计文件,有装饰性构件的应提供其功能说明书和造价计算书:评价查阅相关竣工图和造价计算书。

7.1.11 选用的建筑材料应符合下列规定:

- 1 200km 以内生产的建筑材料重量占建筑材料总重量的比例应大于 60%:
- 2 现浇混凝土应采用预拌混凝土,建筑砂浆应采用预拌砂浆。

[条文说明]7.1.11 本条适用于各类民用建筑的预评价、评价。第 1 款预评价阶段不 参评。

本条沿用本标准 2017 年版第 7.1.3 条、第 7.2.7 条、第 7.2.8 条。

第1款,鼓励选用本地化建材,是减少运输过程的资源和能源消耗、降低环境污染的重要手段之一。本条要求就地取材制成的建筑产品所占的比例应大于60%。200km是指建筑材料的最后一个生产工厂或场地到施工现场的运输距离。

第2款,提倡和推广使用预拌混凝土和预拌砂浆,其应用技术已较为成熟。与现场搅拌混凝土相比,预拌混凝土产品性能稳定,易于保证工程质量,且采用预拌混凝土能够减少施工现场噪声和粉尘污染,节约能源、资源,减少材料损耗。预拌混凝土应符合现行国家标准《预拌混凝土》GB/T 14902 的规定。

现场拌制砂浆施工后经常出现空鼓、龟裂等质量问题,工程返修率高。预拌砂浆是由专业化工厂规模化生产的,可以很好地满足砂浆保水性、和易性、强度和耐久性要求,减少环境污染、材料损耗小、施工效率高、工程返修率低。预拌砂浆应符合现行国家标准《预拌砂浆》GB/T 25181 及《预拌砂浆应用技术规程》JGJ/T 223 的有关规定。

本条的评价方法为:预评价查阅结构施工图及设计说明、工程材料预算清单;评价 查阅结构竣工图及设计说明、购销合同及用量清单等有关证明文件。

7.2 评分项

I 节地与土地利用

- 7.2.1 节约集约利用土地,评价总分值为 20 分,并按下列规则评分:
- 1 对于住宅建筑,根据其所在居住街坊人均住宅用地指标按表 7.2.1-1 的规则评分。

表 7.2.1-1 居住街坊人均住宅用地指标评分规则

人均住宅用地指标 A(m²)					
平均3层	平均 4~6 层	平均 7~9 层	平均 10~18 层	平均 19 层	得分

及以下				及以上	
33 <a≤36< td=""><td>27<a≤30< td=""><td>20<a≤21< td=""><td>16<<i>A</i>≤17</td><td>12<<i>A</i>≤13</td><td>15</td></a≤21<></td></a≤30<></td></a≤36<>	27 <a≤30< td=""><td>20<a≤21< td=""><td>16<<i>A</i>≤17</td><td>12<<i>A</i>≤13</td><td>15</td></a≤21<></td></a≤30<>	20 <a≤21< td=""><td>16<<i>A</i>≤17</td><td>12<<i>A</i>≤13</td><td>15</td></a≤21<>	16< <i>A</i> ≤17	12< <i>A</i> ≤13	15
<i>A</i> ≤33	<i>A</i> ≤27	<i>A</i> ≤20	<i>A</i> ≤16	<i>A</i> ≤12	20

2 对于公共建筑,根据不同功能建筑的容积率(R)按表 7.2.1-2 的规则评分。

表 7.2.1-2 公共建筑容积率 (R) 评分规则

行政办公、商务办公、商业金融、	教育、文化、体育、医疗卫生、	得分
旅馆饭店、交通枢纽等	社会福利等	1471
1.0≤ <i>R</i> <1.5	0.5≤ <i>R</i> <0.8	8
1.5≤ <i>R</i> <2.5	<i>R</i> ≥2.0	12
2.0≤ <i>R</i> <3.5	0.8≤ <i>R</i> <1.5	16
<i>R</i> ≥3.5	1.5≤ <i>R</i> <2.0	20

[条文说明]7.2.1 本条适用于各类民用建筑的预评价、评价。

本条在本标准2017年版第4.2.1条基础上发展而来。

对住宅建筑,人均居住用地指标是控制其节地的关键性指标。本标准与现行国家标准《城市居住区规划设计标准》GB 50180 进行了对接,并以居住区的最小规模即居住街坊的控制指标为基础,提出了人均住宅用地指标评分规则。居住街坊是指住宅建筑集中布局、由支路等城市道路围合(一般为 2hm²~4hm² 住宅用地,约 300 套~1000 套住宅)形成的居住基本单元。评价时,如果建设项目规模超过 4 hm²,应以其小区路围合形成的居住街坊为评价单元计算人均住宅用地指标。

对公共建筑,容积率是控制其节地的关键性指标。本标准在充分考虑公共建筑功能特征的基础上进行分类,一类是容积率通常较高的行政办公、商务办公、商业金融、旅馆饭店、交通枢纽等设施,另一类是容积率不宜太高的教育、文化、体育、医疗卫生、社会福利等公共服务设施,并分别制定了评分规则。评价时应根据建筑类型对应的容积率进行赋值。

本条的评价方法为: 预评价查阅规划许可的设计条件、计算书、相关施工图; 评价查阅相关竣工图、计算书。

7.2.2 合理开发利用地下空间,评价总分值为 12 分,根据地下空间开发利用指标,按表 7.2.2 的规则评分。

表 7.2.2 地下空间开发利用指标评分规则

建筑类型	地下空间开发利用指标	得分
------	------------	----

住宅建筑	地下建筑面和上地上建筑面和的比较 D	$5\% \le R_r < 20\%$	5
	地下建筑面积与地上建筑面积的比率 R_r 地下一层建筑面积与总用地面积的比率 R_p	$20\% \le R_{\rm r} < 35\%$	7
	地下 宏建巩固恢与总用地固恢的比率 K p	$R_{\rm r}$ ≥35% $\perp R_{\rm p}$ <60%	12
公共建筑	ᆘᆍᄺᄽᅙᇷᆔᅛᆸᆔᆄᇎᇷᆉᅛ ᄞ	$R_{\rm pl} \ge 0.5$	5
	地下建筑面积与总用地面积之比 R _{pl}	$R_{\rm pl}$ ≥0.7 \perp	7
	地下一层建筑面积与总用地面积的比率 R _p	$R_{\rm pl} \ge 1.0$ 且 $R_{\rm p} < 60\%$	12

[条文说明]7.2.2 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 4.2.3 条的基础上发展而来。

由于地下空间的利用受诸多因素制约,因此未利用地下空间的项目应提供相关说明。 经论证,建筑规模、场地区位、地质等建设条件确实不适宜开发地下空间,并提供经济 技术分析报告的,本条可直接得分。

开发利用地下空间是城市节约集约用地的重要措施之一。地下空间的开发利用应与 地上建筑及其他相关城市空间紧密结合、统一规划,但从雨水渗透及地下水补给、减少 径流外排等生态环保要求出发,地下空间也应利用有度、科学合理。

本条的评价方法为: 预评价查阅相关设计文件、计算书; 评价查阅相关竣工图、计算书。

- 7.2.3 采用机械式停车设施、地下停车库或地面停车楼等方式,评价总分值为 8分,并按下列规则评分:
 - 1 采用机械式停车设施、地下停车库方式,按下列规则评分:
- 1) 住宅建筑地面停车位数量与住宅总套数的比率小于 10%,得 4分;小于 6%,得 8分:
- 2)公共建筑地面停车占地面积与其总建设用地面积的比率小于8%,得4分,小于5%,得8分。
 - 2 采用地面停车楼方式,按下列规则评分:

建筑地面停车楼停车数量与其总停车数量比率不小于40%,得4分;不小于80%,得8分。

3 采用混合停车方式,分别按本条第1款、第2款进行评价,两款得分累计, 总分最高得8分。

[条文说明]7.2.3 本条适用于各类民用建筑的预评价、评价。

本条在本标准2017年版第4.2.10条基础上发展而来。本标准鼓励建设立体式停车设施节约集约利用土地,提高土地使用效率,让更多的地面空间作为公共活动空间或公共

绿地, 营造宜居环境。

第1款,对于住宅、公建混合类型的建筑,应按不同类型建筑的停车数分别计算得分,然后乘以不同类型建筑所占的建筑面积比例进行叠加计算。第2款地面停车楼的停车数量和停车占地面积不计入第1款中。

本条的评价方法为: 预评价查阅相关设计文件、计算书; 评价查阅相关竣工图、计算书。

II 节能与能源利用

- 7.2.4 优化建筑围护结构的热工性能,评价总分值为 10 分,并按下列规则评分:
- 1 围护结构热工性能比国家及山东省现行相关建筑节能设计标准规定的提高幅度达到 5%,得 4分;达到 10%,得 7分;达到 15%及以上,得 10分。
- 2 建筑供暖空调负荷降低 5%,得 4分;降低 10%,得 7分;降低 15%,得 10分。

[条文说明] 7.2.4 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 5.2.3 条的基础上发展而来。

第 1 款,要求就在围护结构热工性能应优于国家及我省现行有关建筑节能设计标准对外墙、屋顶、外窗、幕墙等围护结构主要部位的传热系数 K 和太阳得热系数 SHGC 的要求。对本款进行评价时依据的具体标准包括:现行国家和山东省标准《公共建筑节能设计标准》GB 50189、《严寒和寒冷地区居住建筑节能设计标准》JGJ 26、《公共建筑节能设计标准》DB37/5026。对于我省各类建筑,不对太阳得热系数 SHGC 做进一步提升的要求,只对其围护结构的传热系数 K 提出要求,但窗墙比超过 0.5 的朝向除外。

第2款,适用于所有建筑类型。特别是对于围护结构没有限值要求的建筑,以及室内发热量(包括人员、设备和灯光等)超过40W/m²的公共建筑,应优先采用第2款判定。

建筑供暖空调负荷降低比例应按照行业标准《民用建筑绿色性能计算标准》JGJ/T 449-2018 第 5.2 节的规定,通过计算建筑围护结构节能率来判定。建筑围护结构节能率 指的是,与参照建筑相比,设计建筑通过围护结构热工性能改善而使全年供暖空调能耗

降低的百分数。

本条的评价方法为:预评价查阅相关设计文件(设计说明、围护结构施工详图)、节能计算书、建筑围护结构节能率分析报告(第2款评价时);评价查阅相关竣工图(设计说明、围护结构竣工详图)、节能计算书、建筑围护结构节能率分析报告(第2款评价时)。

7.2.5 供暖空调系统的冷、热源机组能效均优于现行山东省工程建设标准《公共建筑节能设计标准》DB37/5155 的规定以及现行有关国家标准能效限定值的要求,评价总分值为8分,按表7.2.5的规则评分。

表 7.2.5 冷、热源机组能效提升幅度评分规则

机组类型		能效指标	参照标准	评分要	 京求
电机驱动的蒸气压缩循		制冷性能系数(COP)	现行有关	2级能效	1级能效
环冷水(热	泵) 机组	制冷性能系数(COP)	国家标准	等级限值	等级限值
			现行山东省		
			地方标准		
直燃型溴化铂	埋吸收式冷	制冷、供热性能系数	《公共建筑	七米四六年	担立 20/
(温) 7	水机组	(COP)	节能设计标	标准限定值	提高 3%
			准》DB37/		
			5155		
单元式空气调节机、风 管送风式空调机组		制冷季节能源消耗效 率 (SEER)、 全年能源消耗效率 (APF)	现行有关 国家标准	2 级能效 等级限值	1级能效等级限值
多联式空调 (热泵)机	水冷	制冷综合性能系数 [<i>IPLV</i> (C)]	现行山东省地方标准	提高 20%	提高 35%
组	风冷	全年能源消耗效率 (APF)	《公共建筑	提高 2%	提高 3%
/·□ Jukh	++1. 444.	热效率	准》DB37/	提高2个	提高5个
	燃煤		5155	百分点	百分点
锅炉	444 1-12 444			提高1个	提高3个
	燃油燃气	热效率		百分点	百分点

房间空气调节器 家用燃气热水炉 蒸汽型溴化锂 吸收式冷水机组	能效比(<i>EER</i>)、 能源消耗效率 热效率值 (η) 制冷、供热性能系数 (<i>COP</i>)	现行有关 国家标准	节能评价值	1级能效等级限值
	4分	8分		

[条文说明]7.2.5 本条适用于各类民用建筑的预评价、评价。对于城市市政热源,不 对其热源机组能效进行评价。

本条在本标准 2017 年版第 5.2.6 条、第 11.2.2 条基础上发展而来。对于同时存在供暖、空调的项目, 冷热源能效提升应同时满足表 7.2.6 的要求才能得分。

山东省工程建设标准《公共建筑节能设计标准》DB37/5155-2019 强制性条文第 4.2.5、 第 4.2.10、第 4.2.12、第 4.2.15 和第 4.2.19 条,已根据国家标准《锅炉节能技术监督管理 规程》TSG G0002-2010 第 1 号修改单、《冷水机组能效限定值及能源效率等级》GB 19577-2015、《单元式空气调节机能效限定值及能效等级》GB 19576-2019、《风管送风式 空调机组能效限定值及能效等级》GB37479-2019、《多联式空调(热泵)机组能效限定 值及能源效率等级》GB 21454-2008、《蒸汽和热水型溴化锂吸收式冷水机组》GB/T 18431 等,分别对锅炉名义工况下的热效率、电机驱动的蒸气压缩循环冷水(热泵)机组的性 能系数(COP)、采用电机驱动压缩机的单元式空气调节机和风管送风式空气调节机组的能 源消耗效率 (SEER /APF)、多联式空调(热泵)机组的制冷综合性能系数 [IPLV(C)] 和全年能源消耗效率(APF)、直燃型溴化锂吸收式冷(温)水机组的性能参数提出了基 本要求。本条在此基础上,以比其强制性条文规定值提高百分比(锅炉热效率以百分点) 或能效等级的形式,对包括上述机组在内的供暖空调冷热源机组能源效率提出了更高要 求。对于量大面广的住宅或小型公建中采用分体空调器、燃气热水炉、蒸汽型溴化锂吸 收式冷(温)水机组等其他设备作为供暖空调冷热源(含热水炉同时作为供暖和生活热 水热源的情况), 应以现行国家标准《房间空气调节器能效限定值及能效等级》GB12021.3、 《转速可控型房间空气调节器能效限定值及能效等级》GB 21455、《家用燃气快速热水器 和燃气采暖热水炉能效限定值及能效等级》GB 20665、《溴化锂吸收式冷水机组能效限定 值及能效等级》GB 29540 等中的节能评价值作为本条得分的依据, 若在节能评价值上再 提高一级, 可以得到更高的分值。

本条的评价方法为: 预评价查阅相关设计文件: 评价查阅相关竣工图、主要产品型

式检验报告。

- 7.2.6 采取有效措施降低供暖、通风与空调输配系统的能耗,评价总分值为 5 分,并按下列规则分别评分并累计:
- 1 风量大于 10000m³/h 的通风或空调系统,其风道系统单位风量耗功率比现行国家标准《公共建筑节能设计标准》GB 50189 的规定低 20%及以上,得 2 分:
- 2 集中供暖系统热水循环泵的耗电输热比、空调冷热水系统循环水泵的耗电输冷(热)比比现行国家标准《民用建筑供暖通风与空气调节设计规范》GB 50736 规定值低 20%及以上,得 3 分。

[条文说明]7.2.6 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 5.2.7 条基础上发展而来。本条第 1 款,对于采用无新风系统的分体空调或设置风量小于等于 10000m³/h 的通风系统或空调风系统的项目,本款可直接得 2 分;对于设置风量大于 10000m³/h 的通风系统或空调风系统的项目,其风道系统单位风量耗功率需参与评价;第 2 款,对于非集中供暖或集中水系统空调的项目,如分体空调、多联机空调(热泵)机组、单元式空气调节机等,本款可直接得分。

本条主要判断参评项目是否采取了大温差空调制冷系统,或者更高效率的风机、水泵.评价其对输配系统能耗的影响。

第 1 款,应按照国家标准《公共建筑节能设计标准》GB50189-2015 中的第 4.3.22 条对空调风系统和通风系统的风道系统单位风量耗功率的要求,进行评价。

第 2 款,应按照国家标准《民用建筑供暖通风与空气调节设计规范》GB 50736-2012 中的第 8.5.12 条和第 8.11.13 条对集中供暖系统热水循环泵的耗电输热比、空调冷热水系统循环水泵的耗电输冷(热)比的要求进行评价。

本条提出对以上参数的更优化要求, 通过输配系统的优化设计, 降低输配能耗。

本条的评价方法为:预评价查阅相关设计文件;评价查阅相关竣工图、主要产品型 式检验报告。

- 7.2.7 采用节能型电气设备及节能控制措施,评价总分值为 12 分,并按下列规则分别评分并累计:
- 1 主要功能房间的照明功率密度值达到现行国家标准《建筑照明设计标准》 GB 50034 规定的目标值,得 3 分;
 - 2 采光区域的人工照明随天然光照度变化自动调节,得2分;

- 3 照明产品、三相配电变压器、水泵、风机等设备均满足国家现行相关标准的节能评价值的要求,得2分;
 - 4 干式变压器选择非晶合金铁芯型,得1分;
- 5 对垂直电梯,具有群控、变频调速拖动、能量再生回馈两项以上技术,得 1 分;
 - 6 空调冷(热)源系统采取节能控制措施, 得1分;
 - 7 电开水器等电热设备,设置定时控制装置,得1分;
 - 8 供电半径不大于 200 米, 得 1 分。

【条文说明】7.2.7 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 5.2.15 条基础上发展而来。

电气设备的节能选型及控制措施, 对于实现电气系统节能起着关键的作用。

- 第 1 款,要求主要功能房间的照明功率密度值不应高于现行国家标准《建筑照明设计标准》GB 50034 规定的目标值要求。
- 第2款,人工照明随天然光照度变化自动调节,不仅可以保证良好的光环境,避免室内产生过高的明暗亮度对比,还能在较大程度上降低照明能耗。

第 3 款,要求所用配电变压器满足现行国家标准《三相配电变压器能效限定值及能效等级》GB 20052 规定的节能评价值,油浸式配电变压器、干式配电变压器的空载损耗和负载损耗值均应不高于能效等级 2 级的规定。照明产品、水泵、风机等其他电气设备也满足国家现行有关标准的节能评价值。

第 4 款, 非晶合金变压器空载损耗不到普通变压器的四分之一, 建筑物一投入使用, 变压器就每年 365 天 24 小时连任运行, 采用非晶合金变压器无论在节能方面还是在经济方面都有很大意义。

第5款,按第7.1.6条,对垂直电梯,具有群控、变频调速拖动、能量再生回馈一项技术,为控制项。群控很容易实现,另外两项不容易实现,但节能效果明显。

第6款,中央空调系统是整个建筑能耗的中心,空调冷(热)源系统作为空调系统的中心,其设备数量、容量与负载的匹配设计和采用的系统节能控制策略,对空调系统的能耗影响重大。节能控制包括根据冷(热)负荷对制冷机的控制和循环水泵的变频控制。

目前,新型的强弱电一体化控制"绿色建筑设备节能控制与管理系统"是未来节能控

制的主流,总线制、网络式建筑设备监控系统也是目前应用较多的控制系统。采用智能控制技术,实现中央空调系统运行参数的适时调整,实现冷媒流量跟随负荷的变化而变化,确保主机在任何负荷条件下都处于最佳运行工况,始终保持较高的转换效率,最大限度降低空调系统能耗,达到节约运行成本的目的。

第7款, 电开水器等电热设备用电量较大, 下班后或夜间时, 人员使用减少, 避免重复加热。除设备自带控制装置外, 应采取措施满足定时控制的要求。

第8款,减少供电半径能有效的减少电能的线路损耗,《城市配电网规划设计规范》 GB50613-2010 规定供电半径中心城区不宜超过150米,一般城区不宜超过250。本规定 对绿色建筑提出要求。

本条的评价方法为:预评价查阅相关设计文件;评价查阅相关竣工图、相关产品型式检验报告。

7.2.8 采取措施降低建筑能耗,评价总分值为9分。建筑能耗相比国家现行有 关建筑节能标准降低10%,得5分;降低20%及以上,得9分。

[条文说明]7.2.8 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版的第 5.2.8 条基础上发展而来。

由于供暖空调和照明系统能耗是建筑的主要能耗,所以预评价和投入使用前的评价可计算建筑的供暖空调和照明系统能耗并进行比较,即根据现行行业标准《民用建筑绿色性能计算标准》JGJ/T449 的相关规定,分别计算设计建筑及满足国家现行建筑节能设计标准规定的参照建筑的供暖空调能耗和照明系统能耗,计算其节能率并进行得分判定。本条文涉及的国家建筑节能设计标准,包括现行国家标准《公共建筑节能设计标准》GB50189 和现行行业标准《严寒和寒冷地区居住建筑节能设计标准》JGJ 26 等。

对于投入运行一年后的建筑,本条要求建筑实际能耗与现行国家标准《民用建筑能耗标准》GB/T 51161、现行山东省地方标准《宾馆酒店建筑能耗限额标准》DB37/T 5076、《机关办公建筑能耗限额标准》DB37/T 5077、《商务办公建筑能耗限额标准》DB37/T 5078、《医院建筑能耗限额标准》DB37/T 5079 规定的约束值进行比较,根据建筑实际运行能耗低于约束值的百分比进行节能率得分判断。需要说明的是,当建筑运行后实际人数、小时数等参数和现行国家标准《民用建筑能耗标准》GB/T 51161、现行山东省地方标准《宾馆酒店建筑能耗限额标准》DB37/T 5076、《机关办公建筑能耗限额标准》DB37/T 5077、《商务办公建筑能耗限额标准》DB37/T 5078、《医院建筑能耗限额标准》DB37/T 5079 中

的规定值不同时,可对建筑实际能耗进行修正,具体的修正办法参考现行国家标准《民用建筑能耗标准》GB/T 51161、现行山东省地方标准《宾馆酒店建筑能耗限额标准》DB37/T 5076、《机关办公建筑能耗限额标准》DB37/T 5077、《商务办公建筑能耗限额标准》DB37/T 5079。

本条的评价方法为: 预评价查阅相关设计文件(暖通、电气、内装专业施工图纸及设计说明)、建筑暖通及照明系统能耗模拟计算书;评价查阅相关竣工图,建筑暖通系统及照明系统能耗模拟计算书、暖通系统运行调试记录等,投入使用的项目尚应查阅建筑运行能耗统计数据。

7.2.9 根据山东省气候和自然资源条件合理利用可再生能源,评价总分值为 9 分,按表 7.2.9 的规则评分。

可再生能源利用类型和指标 得 分 2 $20\% \le R_{\rm hw} < 35\%$ 由可再生能源提供的 $35\% \le R_{\rm hw} < 50\%$ 4 生活用热水比例 $50\% \le R_{\rm hw} < 65\%$ 6 $R_{\rm hw}$ 8 $65\% \le R_{\text{hw}} < 80\%$ 9 $R_{\rm hw} \ge 80\%$ $20\% \le R_{ch} < 35\%$ 2 由可再生能源提供的 $35\% \le R_{\rm ch} < 50\%$ 4 空调用冷量和热量比例 6 $50\% \le R_{\rm ch} < 65\%$ $R_{\rm ch}$ $65\% \le R_{\rm ch} \le 80\%$ 8 9 $R_{\rm ch} \ge 80\%$ $0.5\% \le R_e < 1.0\%$ 2 4 $1.0\% \le R_e \le 2.0\%$ 由可再生能源提供电量比例 $2.0\% \le R_e \le 3.0\%$ 6 $R_{\rm e}$ $3.0\% \le R_e \le 4.0\%$ 8 $R_{\rm e} \ge 4.0\%$ 9

表 7.2.9 可再生能源利用评分规则

[条文说明]7.2.9 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 5.2.19 条基础上发展而来。

本条对由可再生能源提供的生活热水比例、空调用冷量和热量比例、电量比例进行 分档评分。当建筑的可再生能源利用不止一种用途时,可各自评分并累计,当累计得分 超过 10 分时,应取为 10 分。本条涉及的可再生能源应用比例,应为可再生能源的净贡 献量。

对于可再生能源提供的生活热水比例,住宅可沿用住户比例的判别方式。如采用太阳能热水器等提供生活热水的住户比例达到表 7.2.10 所要求的数值,即可得相应分(但仍需校核太阳能热水系统的供热能力是否与相应住户数量相匹配)。对于公共建筑以及采用公共洗浴形式的住宅建筑,评价时应计算可再生能源对生活热水的设计小时供热量与生活热水的设计小时加热耗热量。对于不适合采用太阳能热水器提供生活热水、但有稳定热水需求的住宅建筑或公共建筑,若采用高效的空气源热泵提供生活热水,满足国家标准《公共建筑节能设计标准》GB 50189-2015 中第 5.3.3 条和山东省工程建设标准《公共建筑节能设计标准》DB37/5155-2019 中第 6.3.2 条的要求,也可在本条得分。

对于可再生能源提供的空调用冷/热量以及电量,评价时可计算设计工况下可再生能源(冷/热)的冷热源机组(如地/水源热泵、空气源热泵)的供冷/热量(即将机组输入功率考虑在内)与空调系统总的冷/热负荷(冬季供热且夏季供冷的,可简单取冷量和热量的算术和),发电机组(如光伏板)的输出功率与供电系统设计负荷之比。运行后应以可再生能源净贡献量为依据进行评价,即应该扣除辅助能耗(如冷却塔、必要的输配能耗或电加热等),再计算可再生能源的全年冷/热贡献量和可替代电量。

采用空气源热泵提供空调供暖冷热源时,其性能系数(COP)应满足山东省工程建设标准《公共建筑节能设计标准》DB37/5155-2019中第4.2.13条的有关规定。

本条的评价方法为: 预评价查阅相关设计文件、计算分析报告; 评价查阅相关竣工 图、计算分析报告、产品型式检验报告。

7.2.10 合理利用余热废热解决建筑的蒸汽、供暖或空调热源、生活热水需求, 评价分值为3分。

[条文说明]7.2.10 本条文适用于各类民用建筑的预评价、评价。

本条沿用自本标准 2017 版第 5.2.18 条。

生活用能系统的能耗在整个建筑总能耗中占有不容忽视的比例,尤其是对于有稳定 热需求的公共建筑而言更是如此。用自备锅炉房满足建筑蒸汽、供暖或空调热源、生活 热水,不仅可能对环境造成较大污染,而且其能源转换和利用也不符合"高质高用"的原 则,不宜采用。鼓励采用热泵、空调余热、其他废热等供应生活热水。在靠近热电厂、 高能耗工厂等余热、废热丰富的地域,如果设计方案中很好地实现了回收排水中的热量, 以及利用其他余热废热作为预热,可降低能源的消耗,同样能提高生活热水系统的用能 效率。一般情况下的具体指标可取为: 余热或废热提供的能量分别不少于建筑所需蒸汽设计日总量的 40%、供暖设计日总量的 30%、生活热水设计日总量的 60%。

本条的评价方法为: 预评价查阅相关设计文件、计算分析报告; 评价查阅相关竣工 图、计算分析报告。

7.2.11 供暖与空调水(风)系统合理采用变频技术,且采用相应的水力平衡措施,评价分值为3分。

[条文说明]7.2.11 本条文适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 5.2.10 条基础上发展而来。

多数空调系统都是按照最不利情况(满负荷)进行系统设计和设备选型的,而建筑在绝大部分时间是处于部分负荷状况的,或者同一时间仅有一部分空间处于使用状态。对于部分负荷、部分空间使用条件的情况,如何采取有效措施以节约能源,显得至关重要。

供暖与空调水(风)系统合理采用水泵(风机)变频等节能技术,实现变水(风)量运行,且采取相应的水力平措施(如设置水力平衡阀等),可保证建筑物在处于部分冷热负荷或仅部分建筑使用时,能根据实际需要提供适量的能源供给,同时不降低能源转换效率和舒适度,并能够保证系统在实际运行中实现节能高效运行。

本条的评价方法为: 预评价查阅相关设计文件、计算书; 评价查阅相关竣工图、计算书。

7.2.12 合理设计空调排风能量回收系统并运行可靠,评价分值为3分。

[条文说明]7.2.12 本条文适用于各类民用建筑的预评价、评价。

本条沿用自本标准 2017 版第 5.2.16 条。

空调系统中处理新风所需的冷热负荷占建筑物总冷热负荷的比例很大,对于经常运行、且投资回收期较短的空调风系统,为有效地减少新风冷热负荷,宜采用空气—空气能量回收装置回收空调排风中的热量和冷量,用来预热和预冷新风,可以产生显著地节能效益。

要做到对排风能量回收系统设计合理,应充分考虑当地的气象条件、能量回收系统的使用时间等因素,并应进行针对具体工程进行技术经济比较,在满足节能标准的前提下,如果系统的回收期过长,则不应采用能量回收系统。

现行国家标准《空气—空气能量回收装置》GB/T21087 将空气热回收装置按换热类

型分为全热回收型和显热回收型两类,同时规定了内部漏风率和外部漏风率指标。由于热回收原理和结构特点的不同,空气热回收装置的处理风量和排风泄漏量存在较大的差异。当排风中污染物浓度较大或污染物种类对人体有害时,在不能保证污染物不泄漏到新风送风中时,空气热回收装置不应采用转轮式空气热回收装置,同时也不宜采用板式或板翅式空气热回收装置。我省属于寒冷地区,宜选用全热回收装置。空气热回收装置的空气积灰对热回收效率的影响较大,设计中应予以重视,并考虑热回收装置的过滤器设置问题。

对于设有集中排风的空调系统经技术经济比较合理时,宜设置空气-空气能量回收装置,且其额定热回收效率应不低于 60%;对于有人员长期停留且不设置集中新风和排风系统的空气调节区或空调房间,宜在各空气调节区或空调房间分别安装带热回收功能的双向换气装置,且其额定热回收效率应不低于 55%。

本条的评价方法为: 预评价查阅相关设计文件、计算分析报告; 评价查阅相关竣工 图, 计算分析报告、主要产品型式检验报告。

7.2.13 对冬季或过渡季节存在一定量供冷需求的区域或建筑,充分利用新风降温或经技术经济分析合理时利用冷却塔提供空气调节冷水或使用具有同时制冷和制热功能的空调(热泵)系统或产品,评价分值为3分。

[条文说明]7.2.13 本条文适用于各类民用建筑的预评价、评价。

本条为新增条文。冬季或过渡季节存在一定量供冷需求的建筑,不宜通过开启制冷机供冷。首先应考虑采用全新风或增大新风比运行,利用新风消除室内余热;当受新风量或新风温度限制,新风无法满足室内负荷需要时,可考虑采用冷却塔供冷。某些空调系统形式如水环热泵空调系统、具有热回收功能的多联机系统等,具有回收内区余热的功能,节能性较好;某些空调(热泵)产品,可以具备同时制冷、制热功能,也是利用了内区的余热,此时需要空调水系统采用四管制或分区两管制。满足上述情况之一时,可直接得分。

本条的评价方法为: 预评价查阅相关设计文件、计算分析报告; 评价查阅相关竣工 图、计算分析报告。

Ⅲ 节水与水资源利用

7.2.14 使用较高用水效率等级的卫生器具,评价总分值为 12 分,并按下列规

则评分:

- 1 全部卫生器具的用水效率等级达到 2 级,得 5 分。
- 250%以上卫生器具的用水效率等级达到1级且其他达到2级,得8分。
- 3 全部卫生器具的用水效率等级达到1级,得12分。

[条文说明]7.2.14 本条适用于各类民用建筑的预评价、评价。

本条在本标准2017年版第6.2.8条、11.2.5条基础上发展而来。

绿色建筑鼓励选用更高节水性能的节水器具。目前,我国已对大部分用水器具的用水效率制定了标准,如:现行国家标准《水嘴用水效率限定值及用水效率等级》GB 25501、《坐便器水效限定值及水效等级》GB 25502、《小便器用水效率限定值及用水效率等级》GB 28377、《淋浴器用水效率限定值及用水效率等级》GB 28378、《使器冲洗阀用水效率限定值及用水效率等级》GB 28378、《使器冲洗阀用水效率限定值及用水效率等级》GB 28379、《蹲便器用水效率限定值及用水效率等级》GB 30717等。

在设计文件中要注明对卫生器具的节水要求和相应的参数或标准。当存在不同用水效率等级的卫生器具时,按满足最低等级的要求得分。

有用水效率相关标准的卫生器具全部采用达到相应用水效率等级的产品时,方可认定第1款或第3款得分;有用水效率相关标准的卫生器具中,50%以上数量的器具采用达到用水效率等级1级的产品且其他达到2级时,方可认定第2款得分。今后当其他用水器具出台了相应标准时,按同样的原则进行要求。

本条的评价方法为:预评价查阅相关设计文件、产品说明书(含相关节水器具的性能参数要求);评价查阅相关竣工图纸、设计说明、产品说明书、产品节水性能检测报告。

- 7.2.15 绿化灌溉、空调冷却水及空调冷凝水系统采用节水设备或技术,评价总分值为 10 分,并按下列规则分别评分并累计:
 - 1 绿化灌溉采用节水设备或技术,并按下列规则评分:
 - 1) 采用节水灌溉系统,得3分。
- 2) 在采用节水灌溉系统的基础上,设置土壤湿度感应器、雨天自动关闭 装置等节水控制措施,或种植无须永久灌溉植物,得 5 分。
 - 2 空调冷却水系统采用节水设备或技术,并按下列规则评分:
- 1)循环冷却水系统采取设置水处理措施、加大集水盘、设置平衡管或平 衡水箱等方式,避免冷却水泵停泵时冷却水溢出,得2分。

- 2) 采用无蒸发耗水量的冷却技术,得3分。
- 3 设有空调冷凝水收集系统和装置,对其加以有效利用,得2分。

[条文说明]7.2.15 本条适用于各类民用建筑的预评价、评价。不设置空调设备或系统的项目, 第2 款可直接得分。不设置空调或采用溶液除湿等不产生冷凝水的空调系统的建筑, 第3款直接得分。

本条在本标准 2017 年版第 6.2.9 条、第 6.2.10 条和第 6.2.15 条的基础上发展而来。 第 1 款,绿化灌溉应采用喷灌、微灌等节水灌溉方式,同时还可采用土壤湿度传感 器或雨天自动关闭等节水控制方式。

采用再生水灌溉时,因水中微生物在空气中极易传播,应避免采用喷灌方式。微灌 包括滴灌、微喷灌、涌流灌和地下渗灌。

无须永久灌溉植物是指适应当地气候,仅依靠自然降雨即可维持良好的生长状态的植物,或在干旱时体内水分丧失,全株呈风干状态而不死亡的植物。无须永久灌溉植物仅在生根时需进行人工灌溉,因而不需设置永久的灌溉系统,但临时灌溉系统应在安装后一年之内移走。

当项目90%以上的绿化面积采用了高效节水灌溉方式或节水控制措施时,方可判定按"采用节水灌溉系统"得分;采用移动喷灌头本条不得分。当50%以上的绿化面积种植了无须永久灌溉植物,且其余部分绿化采用了节水灌溉方式时,可判定按"种植无须永久灌溉植物"得分。当选用无须永久灌溉植物时,设计文件中应提供植物配置表,并说明是否属无须永久灌溉植物,申报方应提供当地植物名录,说明所选植物的耐旱性能。

第2款,公共建筑集中空调系统的冷却水补水量占据建筑物用水量的30%~50%,减少冷却水系统不必要的耗水对整个建筑物的节水意义重大。

开式循环冷却水系统或闭式冷却塔的喷淋水系统可设置水处理装置和化学加药装置 改善水质,减少排污耗水量;可采取加大集水盘、设置平衡管或平衡水箱等方式,相对 加大冷却塔集水盘浮球阀至溢流口段的容积,避免停泵时的泄水和启泵时的补水浪费。

本款中的"无蒸发耗水量的冷却技术"包括采用分体空调、风冷式冷水机组、风冷式 多联机、地源热泵、干式运行的闭式冷却塔等。

第3款,对于大多数公共建筑,空调系统在夏季运行时,当冷却器的表面温度低于空气的露点温度时,空气经过冷却器时就会析出冷凝水,目前,大都将冷凝水不加利用直接排走。而冷凝水水质好、水温低,可回用于空调冷却水系统的补水、被处理空气的

预冷等,不仅能有效地降低空调的能耗,而且节省水资源。对于住宅小区,冷凝水收集 后,还可用于小区绿化灌溉等。

本条的评价方法为:预评价查阅相关设计图纸、设计说明(含相关节水产品的设备材料表、冷却节水措施说明)、产品说明书等;评价查阅设计说明、相关竣工图、产品说明书、产品节水性能检测报告、节水产品说明书等。

- 7.2.16 结合雨水综合利用设施营造室外景观水体,室外景观水体利用雨水的补水量大于水体蒸发量的 60%,且采用保障水体水质的生态水处理技术,评价总分值为 6分,并按下列规则分别评分并累计:
 - 1 对进入室外景观水体的雨水,利用生态设施削减径流污染,得3分;
 - 2 利用水生动、植物保障室外景观水体水质,得 3 分。

[条文说明]7.2.16 本条适用于各类民用建筑的预评价、评价。未设室外景观水体的项目,本条可直接得分。室外景观水体的补水没有利用雨水或雨水利用最不满足要求时,本条不得分。

本条在本标准 2017 年版第 6.2.14 条的基础上发展而来。

国家标准《民用建筑节水设计标准》GB 50555 - 2010 中强制性条文第 4.1.5 条规定 "景观用水水源不得采用市政自来水和地下井水",全文强制国家标准《住宅建筑规范》 GB 50368 - 2005 第 4.4.3 条规定"人工景观水体的补充水严禁使用自来水",因此设有水景的项目,水体的补水只能使用非传统水源,或在取得当地相关主管部门的许可后,利用临近的河、湖水。有景观水体,但利用临近的河、湖水进行补水的,本条不得分。

设置本条的目的是鼓励将雨水控制利用和室外景观水体设计有机地结合起来。景观水体的补水应充分利用场地的雨水资源,不足时再考虑其他非传统水源的使用。我省为缺水地区,应谨慎考虑设置景观水体,景观水体的设计应通过技术经济可行性论证确定规模和具体形式。设计时应做好景观水体补水量和水体蒸发量逐月的水量平衡,确保满足本条的定量要求。

本条要求利用雨水提供的补水量大于水体蒸发量的 60%, 亦即采用除雨水外的其他水源对景观水体补水的量不得大于水体蒸发量的 40%。设计时应做好景观水体补水量和水体蒸发量的水量平衡景观水体的补水管应单独设置水表, 不得与绿化用水、道路冲洗用水合用水表。

景观水体的水质根据水景补水水源和功能性质不同, 应不低于国家现行标准的相关

要求,具体水质标准详见本标准第5.2.3条。景观水体的水质保障应采用生态水处理技术,在雨水进入景观水体之前充分利用植物和土壤渗滤作用削减径流污染,通过采用非硬质池底及生态驳岸,为水生动植物提供栖息条件,通过水生动植物对水体进行净化;必要时可采取其他辅助手段对水体进行净化,保障水体水质安全。

本条的评价方法为:预评价查阅相关设计文件(含总平面图竖向、室内外给排水施工图、水景详图等),水量平衡计算书;评价查阅相关竣工图,计算书,景观水体补水用水计量运行记录,景观水体水质检测报告等。

- 7.2.17 使用非传统水源,评价总分值为12分,并按下列规则分别评分并累计:
- 1 绿化灌溉、车库及道路冲洗、洗车用水采用非传统水源的用水量占其总用水量的比例不低于40%,得2分;不低于50%,得3分;不低于60%,得4分;
- 2 冲厕采用非传统水源的用水量占其总用水量的比例不低于 30%,得 2分;不低于 40%,得 3分;不低于 50%,得 4分;
- 3 冷却水补水采用非传统水源的用水量占其总用水量的比例不低于 20%, 得 2 分; 不低于 30%, 得 3 分; 不低于 40%, 得 4 分。

[条文说明]7.2.17 本条适用于各类民用建筑的预评价、评价。

本条在本标准2017年版第6.2.12条、第6.2.13条基础上发展而来。

非传统水源指不同于传统地表水供水和地下水供水的水源,包括再生水、雨水、海水等,再生水又分市政再生水和建筑中水。我省属于水资源较为匮乏的地区,宜充分考虑项目自身情况合理使用非传统水源。

非传统水源的选择与利用方案应通过经济技术比较确定:

第1款,雨水更适合于季节性利用,比如用于绿化、景观水体、冷却等季节性用途,同时雨水调蓄池在调蓄容积上增加雨水回用容积也可以作为杂用水补充水源使用。第2款,中水和雨水则更适合于非季节性利用,比如冲厕等全年性用途。第3款,使用非传统水源替代自来水作为冷却水补水水源时,其水质指标应满足现行国家标准《采暖空调系统水质》GB/T29044中规定的空调冷却水的水质要求。

全年来看,冷却水用水时段与我省各地市的降雨高峰时段基本一致,因此收集雨水 处理后用于冷却水补水,从水量平衡上容易达到吻合。雨水的水质要优于生活污废水, 处理成本较低、管理相对简单,具有较好的成本效益,值得推广。

"采用非传统水源的用水量占其总用水量的比例"指项目某部分杂用水采用非传统水

源的用水量占该部分杂用水总用水量的比例。

本条文涉及的非传统水源用水量、总用水量均为设计年用水量。设计年用水量由设计平均日用水量和用水时间计算得出。

设计平均日用水量应根据节水用水定额和设计用水单元数量计算得出,节水用水定额取值详见现行国家标准《民用建筑节水设计标准》GB 50555。

本条的评价方法为:预评价查阅相关设计文件、当地相关主管部门的许可、非传统 水源利用计算书;评价查阅相关竣工图纸、设计说明、非传统水源利用计算书、非传统 水源水质检测报告。

7.2.18 除卫生器具、绿化灌溉和冷却塔外的其他用水采用节水技术或措施, 评价总分值为 5 分。其他用水中采用节水技术或措施的比例达到 50%, 得 2 分; 达到 80%, 得 5 分。

[条文说明]7.2.18 本条适用于各类民用建筑的预评价、评价。

本条沿用自本标准 2017 年版第 6.2.11 条。除卫生器具、绿化灌溉和冷却塔以外的其他用水也应采用节水技术和措施,如车库和道路冲洗用的节水高压水枪、节水型专业洗衣机、循环用水洗车台,给水深度处理采用自用水量较少的处理设备和措施,集中空调加湿系统采用用水效率高的设备和措施。按采用了节水技术和措施的用水量占其他用水总用水量的比例进行评分。

本条的评价方法为:预评价查阅相关设计文件、计算书、产品说明书;评价查阅相 关竣工图纸、设计说明、查阅水表计量报告,并现场核查,现场核查包括实地检查设备 的运行情况。

IV 节材与绿色建材

7.2.19 建筑所有区域实施土建工程与装修工程一体化设计及施工,评价分值 为 8 分。

[条文说明]7.2.19 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 7.2.3 条和第 9.2.16 条基础上发展而来。

土建和装修一体化设计、施工,对节约能源资源有重要作用。土建和装修一体化设计,要求对土建设计和装修设计统一协调,在土建设计时考虑装修设计需求,事先进行 孔洞预留和装修面层固定件的预埋,避免在装修时对已有建筑构件打凿、穿孔。这样既 可减少设计的反复, 又可保证结构的安全, 减少材料消耗, 并降低装修成本。

实践中,可由建设单位统一组织建筑主体工程和装修施工,也可由建设单位提供菜单式的装修做法由业主选择,统一进行图纸设计、材料购买和施工。在选材和施工方面尽可能采取工业化制造,具备稳定性、耐久性、环保性和通用性的设备和装修装饰材料,从而在工程竣工验收时室内装修一步到位,避免破坏建筑构件和设施。

本条的评价方法为: 预评价查阅土建、装修各专业施工图及其他证明材料; 评价查阅土建、装修各专业竣工图及其他证明材料。

- 7.2.20 合理选用建筑结构材料与构件,评价总分值为 10 分,并按下列规则评分:
 - 1 混凝土结构,按下列规则分别评分并累计:
 - 1) 400MPa 级及以上强度等级钢筋应用比例达到 85%,得 5分;
- 2) 混凝土竖向承重结构采用强度等级不小于 C50 混凝土用量占竖向承重结构中混凝土总量的比例达到 50%,得 5分。
 - 2 钢结构,按下列规则分别评分并累计:
- 1) Q345 及以上高强钢材用量占钢材总量的比例达到 50%,得 3分;达到 70%,得 4分;
- 2) 螺栓连接等非现场焊接节点占现场全部连接、拼接节点的数量比例达到 50%,得4分;
 - 3) 采用施工时免支撑的楼屋面板,得2分。
- 3 混合结构:对其混凝土结构部分、钢结构部分,分别按本条第 1 款、第 2 款进行评价,得分取各项得分的平均值。

[条文说明]7.2.20 本条适用于各类民用建筑的预评价、评价。

本条在本标准2017年版第7.2.9条基础上发展而来。

合理选用建筑结构材料,可减小构件的截面尺寸及材料用量,同时也可减轻结构自重,减小地震作用及地基基础的材料消耗,节材效果显著优于同类建材。

本条中建筑结构材料主要指高强度钢筋、高强度混凝土、高强钢材。高强度钢筋包括 400MPa 级及以上受力普通钢筋,高强混凝土包括 C50 及以上混凝土,高强度钢材包括现行国家标准《钢结构设计标准》GB 50017 规定的 Q345 级以上高强钢材。采用混合结构时、考虑混凝土、钢的组合作用优化结构设计、可达到较好的节材效果。

材料用量比例应按以下规则进行计算:

- 1 对于混凝土结构, 需计算高强度钢筋比例、高强混凝土比例:
- 2 对于钢结构, 需计算高强钢材比例、螺栓连接节点数量比例:
- 3 对于混合结构,除计算以上材料之外,还需计算建筑结构比例。

本条的评价方法为: 预评价查阅相关设计文件、各类材料用量比例计算书; 评价查阅相关竣工图、施工记录、材料决算清单、各类材料用量比例计算书。

7.2.21 建筑装修选用工业化内装部品,评价总分值为 8 分。建筑装修选用工业化内装部品占同类部品用量比例达到 50%以上的部品种类,达到 1 种,得 3 分;达到 3 种,得 5 分;达到 3 种以上,得 8 分。

[条文说明]7.2.21 本条适用于各类民用建筑的预评价、评价。

本条在本标准2017年版第7.2.6条基础上发展而来。

本条在国家标准《装配式建筑评价标准》GB/T51129-2017 基础上进一步明确要求。 工业化内装部品主要包括整体卫浴、整体厨房、装配式吊顶、干式工法地面、装配式内 墙、管线集成与设备设施等。

本条的评价方法为:预评价查阅相关设计文件(建筑及装修专业施工图、工业化内装部品施工图)、工业化内装部品用量比例计算书;评价查阅相关竣工图、工业化内装部品用量比例计算书。

- 7.2.22 选用可再循环材料、可再利用材料及利废建材,评价总分值为 10 分, 并按下列规则分别评分并累计:
 - 1 可再循环材料和可再利用材料用量比例,按下列规则评分:
 - 1) 住宅建筑达到6%或公共建筑达到10%,得2分。
 - 2) 住宅建筑达到 10%或公共建筑达到 15%,得 4分。
 - 2 利废建材选用及其用量比例,按下列规则评分:
 - 1) 采用一种利废建材,其占同类建材的用量比例不低于50%,得3分。
- 2) 选用两种及以上的利废建材,每一种占同类建材的用量比例不低于 30%,得6分。

[条文说明]7.2.22 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 7.2.11 和 7.2.13 条基础上发展而来。

建筑材料的循环利用是建筑节材与材料资源利用的重要内容。本条的设置旨在整体

考量建筑材料的循环利用对于节材与材料资源利用的贡献,评价范围是永久性安装在工程中的建筑材料,不包括电梯等设备。有的建筑材料可以在不改变材料的物质形态情况下直接进行再利用,或经过简单组合、修复后可直接再利用,如有些材质的门、窗等。有的建筑材料需要通过改变物质形态才能实现循环利用,如难以直接回用的钢筋、玻璃等,可以回炉再生产。有的建筑材料则既可以直接再利用又可以回炉后再循环利用,例如标准尺寸的钢结构型材等。以上各类材料均可纳入本条范畴。

建筑中选用的可再循环建筑材料和可再利用建筑材料,可以减少生产加工新材料带来的资源、能源消耗及环境污染,具有良好的经济、社会和环境效益。

利废建材即"以废弃物为原料生产的建筑材料",是指在满足安全和使用性能的前提下,使用废弃物等作为原材料生产出的建筑材料,其中废弃物主要包括建筑废弃物、工业废料和生活废弃物。在满足使用性能的前提下,鼓励利用建筑废弃混凝土,生产再生骨料,制作成混凝土砌块、水泥制品或配制再生混凝土;鼓励利用工业废料、农作物秸杆、建筑垃圾、淤泥为原料制作成水泥、混凝土、墙体材料、保温材料等建筑材料;鼓励以工业副产品石膏制作成石膏制品;鼓励使用生活废弃物经处理后制成的建筑材料。

为保证废弃物使用量达到一定比例,本条第2款对不同种类利废建材使用量进行了要求。若采用以废弃物为原料生产的建筑材料,应同时满足相应的国家或行业标准的要求。

本条的评价方法为:预评价查阅工程概预算材料清单、各类材料用量比例计算书、各种建筑材料的使用部位及使用量一览表;评价查阅工程决算材料清单、相关产品检测报告、各类材料用量比例计算书,利废建材中废弃物掺量说明及证明材料。

7.2.23 选用绿色建材,评分总分值为 12 分。绿色建材应用比例不低于 30%,得 4 分;不低于 50%,得 8 分;不低于 70%,得 12 分。

[条文说明]7.2.23 本条适用于各类民用建筑的预评价、评价。

本条在本标准2017年版第7.2.12、11.2.8条基础上发展而来。

为加快绿色建材推广应用,更好地支撑绿色建筑发展,依据住房城乡建设部、工业和信息化部出台的《绿色建材评价标识管理办法》、《促进绿色建材促进绿色建材生产和应用行动方案》和山东省市场监督管理局、山东省住房和城乡建设厅、山东省工业和信息化厅出台的《关于推进实施全省绿色建材产品认证工作的意见》、《绿色建材评价标识管理实施细则》等一系列文件。本条中绿色建材应用比例应根据下式计算,并按表9中

确定得分。

$$P = [(S_1 + S_2 + S_3 + S_4)/100] \times 100\%$$
 (3)

式中: P---绿色建材应用比例:

 S_1 ——主体结构材料指标实际得分值;

S₂——围护墙和内隔墙指标实际得分值;

 S_3 ——装修指标实际得分值;

S4——其他指标实际得分值。

表 9 绿色建材使用比例计算表

	计算项	计算要求	计算单位	计算得分
主体结构	预拌混凝土	$80\% \le P_s \le 100\%$	m ³	10~20*
土净结构	预拌砂浆	50%≤P _s ≤100%	m ³	5~10*
围护墙和	非承重围护墙	$P_{\rm s} \ge 80\%$	m ³	10
内隔墙	内隔墙	$P_{\rm s} \ge 80\%$	m ³	5
	外墙装饰面层涂料、面砖、	P _s ≥80%	m ²	5
	非玻璃幕墙板等	1 ₈ ≥00 / 0	111	3
装修	内墙装饰面层涂料、面砖、壁纸等	$P_{\rm s} \ge 80\%$	m^2	5
衣修	室内顶棚装饰面层涂料、吊顶等	$P_{\rm s} \ge 80\%$	m^2	5
	室内地面装饰面层木地板、面砖等	$P_{\rm s} \ge 80\%$	m ²	5
	门窗、玻璃	$P_{\rm s} \ge 80\%$	m ²	5
	保温材料	$P_{\rm s} \ge 80\%$	m ²	5
	卫生洁具	$P_{\rm s} \ge 80\%$	具	5
其他	防水材料	P _s ≥80%	m ²	5
	密封材料	P _s ≥80%	kg	5
	其他	P _s ≥80%		5

- 注: 1表中带"*"项的分值采用"内插法"计算, 计算结果取小数点后1位。
- 2 预拌混凝土应包含预制部品部件的混凝土用量; 预拌砂浆应包含预制部品部件的砂浆用量; 围护墙、内隔墙采用预制构件时, 计入相应体积计算; 结构保温装修等一体化构件分别计入相应的墙体、装修、保温、防水材料计算公式进行计算。本条的评价方法为: 预评价查阅相关设计文件、计算分析报告; 评价查阅相关竣工图、计算分析报告、检测报告、工程决算材料清单、绿色建材标识证书、施工记录。
- 7.2.24 外门窗采用获得"建筑门窗节能性能标识"的产品,评价分值为 2 分。 [条文说明]7.2.24 本条适用于各类民用建筑的预评价、评价。

本条沿用本标准 2017 年版第 7.2.15 条。

2006年建设部发布实施了《建筑门窗节能性能标识试点工作管理办法》(建科[2006]319号),开启了我国门窗节能性能标识工作,2010年又发布了《关于进一步加强建筑门窗节能性能标识工作的通知》(建科[2010]93号),进一步推动了门窗节能性能标识工作的发展。建筑门窗节能性能标识,内容包括门窗的传热系数、遮阳系数、空气渗透率、可见光透射比等节能性能指标。随着建筑节能工作的深入发展,各种建筑材料(墙体、屋面、外立面等)在节能方面提高的余地已经越来越小,而门窗、幕墙在节能提高方面有很大的潜力,是节能的发展方向。获得标识的企业将按统一规格将包含有这些指标的标签粘贴到产品上。通过这种模式能更加促进生产者优化设计、提高生产能力,为社会提供节能产品.从源头节约资源能源.同时使用户更加注重认识、关注节能.引领需求。

本条的评价方法为: 预评价查阅设计文件中对建筑门窗节能性能标识产品的使用要求; 评价查阅建筑门窗产品获得的标识证书。

8 环境宜居

8.1 控制项

8.1.1 建筑和场地应符合相关日照标准的规定,且不得降低周边建筑的日照标准。

[条文说明]8.1.1 本条适用于各类民用建筑的预评价、评价。

本条沿用本标准 2017 年版第 4.1.4 条。国家标准《民用建筑设计统一标准》GB 50352 2019 第 5 .1.2 条第 2 款要求"有日照要求的建筑和场地应符合国家相关日照标准的规定。"本条与其表述一致。

现行国家标准《民用建筑设计统一标准》GB 50352、《城市居住区规划设计标准》GB 50180、《综合医院建筑设计规范》 GB 51039、《中小学校设计规范》GB 50099、《建筑日照计算参数标准》GBT 50947、现行行业标准《疗养院建筑设计标准》JGJ/T 40、《托儿所、幼儿园建筑设计规范》JGJ 39等,对居住建筑、医院病房楼、休(疗)养院住宿楼、幼儿园、托儿所和大中小学教学楼、中小学校体育场地和幼儿园、托儿所室外游戏场地等的主、客体建筑日照要求作了规定。建筑、场地的布局与设计时需要充分考虑上述标准要求、若没有相应标准要求、符合城乡规划的要求即为达标。

除满足日照和热环境相关标准要求外,本条要求建筑布局还应兼顾周边,减少对相邻的住宅、幼儿园生活用房等有日照标准要求的建筑产生不利的日照遮挡。条文中的"不得降低周边建筑的日照标准"是指:①对于新建项目的建设,应满足周边建筑有关日照标准的要求。②对于改造项目分两种情况:周边建筑改造前满足日照标准的,应保证其改造后仍符合相关日照标准的要求;周边建筑改造前未满足日照标准的,改造后不可再降低其原有的日照水平。

对于周边建筑,现行标准对其日照标准有量化要求的,可以通过模拟计算报告来判定达标;对于周边的非住宅建筑,若现行设计标准对其日照标准没有量化的要求,则可以不进行日照的模拟计算,只要其满足控制性详规即可判定达标。

本条的评价方法为: 预评价查阅相关设计文件、日照分析报告; 评价查阅相关竣工 图、日照分析报告。

8.1.2 室外热环境应满足国家现行有关标准的要求。

[条文说明]8.1.2 本条适用于各类民用建筑的预评价、评价。

本条为新增条文。建筑环境质量与场地热环境密切相关,热环境直接影响人们户外活动的热安全性和热舒适度。现行行业标准《城市居住区热环境设计标准》JGJ 286 对居住区详细规划阶段的热环境设计进行了规定,给出了设计方法、指标、参数。项目规划设计时,应充分考虑场地内热环境的舒适度,采取有效措施改善场地通风不良、遮阳不足、绿量不够、渗透不强的一系列的问题,降低热岛强度,提高环境舒适度。本条要求项目按现行行业标准《城市居住区热环境设计标准》JGJ 286 进行热环境设计。城市居住区是指城市中住宅建筑相对集中布局的地区,简称居住区。如项目处于非居住区规划范围内、符合其城乡规划的要求即为达标。

本条的评价方法为: 预评价查阅相关设计文件、场地热环境计算报告; 评价查阅相 关竣工图、场地热环境计算报告。

- **8.1.3** 配建的绿地应符合所在地城乡规划的要求,合理选择绿化方式,并应符合下列规定:
- 1 植物配置应选择适应当地气候、土壤和环境条件,少维护、耐候性强、病虫害少、对人体无害的植物;
 - 2 种植区域覆土深度和排水能力应满足植物生长需求:
 - 3 应充分利用实土布置绿地:
 - 4 应采用以乔木为主,乔、灌、草组合配置的复层绿化方式;
 - 5 应按国家及山东省的相关规定对古树名木进行保护,避免损毁破坏。

[条文说明]8.1.3 本条适用于各类民用建筑的预评价、评价。

本条在本标准2017年版第4.2.14条的基础上发展而来。

第1款,植物配置应充分体现本地区植物资源的特点,突出地方特色。应选用适应当地气候和所在地土壤种植,在常规绿化栽培技术条件下,不需要特殊保护措施能正常生长发育,保持原有优良性状,且应病虫害少、无针刺、无落果、无飞絮、无毒、无花粉污染、不易导致过敏的植物种类。植物配置应注意季相变化和常绿落叶树种的合理搭配,保证景观效果的长效性。严禁选毒性植物及枝叶有硬刺的植物。尽可能减少使用果毛、飞絮较多的树种。

第 2 款,种植区域的覆土深度应满足乔、灌、草自然生长的需要,一般来说,满足植物生长需求的覆土深度为:乔木大于 1.2m,深根系乔木大于 1.5m,灌木大于 0.5m,

草坪大于 0.3m。种植区域的覆土深度应满足申报项目所在地园林主管部门对覆士深度的要求。鼓励各类公共建筑进行屋顶绿化和墙面垂直绿化,既能增加绿化面积,又可以改善屋顶和墙壁的保温隔热效果,还可有效滞留雨水。新建公共建筑(政府机关、学校、医院、文化体育场所等)条件适宜的屋顶,宜实施屋顶绿化,屋顶绿化实施面积应不小于屋顶可绿化面积的 60%。

第3款,现行国家标准《民用建筑设计统一标准》GB50352第5.4.1条第2款规定"应充分利用实土布置绿地,植物配置应根据当地气候、土壤和环境等条件确定",第5.4.2条第1款规定"地下建筑顶板上的覆土层宜采取局部开放式,开放边应与地下室外部自然土层相连"。本条第3款综合考虑相关规定,提出"应充分利用实土布置绿地"。

第 4 款,配建绿地应以乔木为主,乔、灌、草复层绿化组合配置,并充分考虑场地 冬季日照和夏季遮荫的需求,宜场地绿化、屋顶绿化、垂直绿化、沿口绿化、棚架绿化 等多层次种植。地面绿化覆盖面积中乔灌木占比应达到 70%。

第 5 款, 古树名木应按《山东省古树名木保护办法》的相关规定进行保护, 避免损毁破坏。

本条的评价方法为: 预评价查阅相关设计文件(苗木表、屋顶绿化、覆土绿化和/ 或垂直绿化的区域及面积、种植区域的覆土深度、排水设计); 评价查阅相关竣工图、苗 木采购清单。

8.1.4 场地的竖向设计应有利于雨水的收集或排放,应有效组织雨水的下渗、 滞蓄或再利用;对大于 10hm² 的场地应进行雨水控制利用专项设计,并与海绵城 市设计协调一致。

[条文说明]8.1.4 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 4. 2. 13 条的基础上发展而来。山东省人民政府办公厅鲁政办发 [2016] 5 号《关于贯彻国办发 [2015] 75 号文件推进海绵城市建设的实施意见》指出,建设海绵城市,统筹发挥自然生态功能和人工干预功能,有效控制雨水径流,实现自然积存、自然渗透、自然净化的城市发展方式,有利于修复城市水生态、涵养水资源,增强城市防涝能力,扩大公共产品有效投资,提高新型城镇化质量,促进人与自然和谐发展。建海绵城市就要有"海绵体"。城市"海绵体"既包括河、湖、池塘等水系,也包括绿地、花园、可渗透路面这样的城市配套设施。雨水通过这些"海绵体"下渗、滞蓄、净化、囚用,最后剩余部分径流通过管网、泵站外排,缓减城市内涝的压力。

需要说明的是,本条作为控制项,在执行时要正确理解其要求:①无论是在水资源丰富的地区还是在水资源贫乏的地区,进行建设场地的竖向设计的目的之一是防止因降雨导致场地积水或内涝。现行行业标准《城乡建设用地竖向规划规范》CJJ 83 对此也是有明确要求。②在竖向设计时,到底是有利于雨水收集还是排放,是有选择的,由具体项目及所在地决定。③按照国家推进海绵城市建设的部署,无论是年降雨量丰富的地区还是较少的地区,通过场地竖向设计使雨水下渗,或者滞蓄,或者再利用,都是不难做到的。

对大于 10hm² 的场地,应进行雨水控制与利用专项设计,并与海绵城市设计协调一致,避免实际工程中针对某个子系统(雨水利用、径流减排、污染控制等)进行独立设计所带来的诸多资源配置和统筹衔接不当的问题。具体评价时,场地占地面积大于 10hm² 的项目,应提供雨水专项设计文件;小于 10hm² 的项目可不做雨水专项设计,但也应根据场地条件合理采用雨水控制利用措施,编制场地雨水综合控制利用方案。

本条的评价方法为:预评价查阅相关设计文件(场地竖向设计文件)、年径流总量控制率计算书、设计控制雨量计算书、场地雨水综合利用方案或专项设计文件;评价查阅相关竣工图、年径流总量控制率计算书、设计控制雨量计算书、场地雨水综合利用方案或专项设计文件。

8.1.5 建筑内外均应设置便于识别和使用的标识系统。

[条文说明]8.1.5 本条适用于各类民用建筑的预评价、评价。

本条为新增条文。设置便于识别和使用的标识系统,包括导向标识和定位标识等,能够为建筑使用者带来便捷的使用体验。标识一般有人车分流标识、公共交通接驳引导标识、易于老年人识别的标识、满足儿童使用需求与身高匹配的标识、无障碍标识、楼座及配套设施定位标识、健身慢行道导向标识、健身楼梯间导向标识、公共卫生间导向标识,以及其他促进建筑便捷使用的导向标识等。公共建筑的标识系统应当执行现行国家标准《公共建筑标识系统技术规范》GB/T51223,住宅建筑可以参照执行。

在标识系统设计和设置时,应考虑建筑使用者的识别习惯,通过色彩、形式、字体、符号等整体进行设计,形成统一性和可辨识度。并考虑老年人、残障人士、儿童等不同人群对于标识的识别和感知的方式,例如,老年人由于视觉能力下降,需要采用较大的文字、较易识别的色彩系统等,儿童由于身高较低、识字量不够等,需要采用高度适合、色彩与图形化结合等方式的识别系统等。因此.提出根据不同使用人群特点设置适宜的

标识引导系统, 体现出对不同人群的关爱。

同时,为便于标识识别,应在场地内显著位置上设置标识,标识应反映一定区域范围内的建筑与设施分布情况,并提示当前位置等。建筑及场地的标识应沿通行路径布置,构成完整和连续的引导系统。

本条的评价方法为:预评价查阅相关设计文件(标识系统设计文件);评价查阅相关竣工图。

8.1.6 场地内不应有排放超标的污染源,且应通过合理布局和适当隔离等措施 降低周边污染源的影响。

[条文说明]8.1.6 本条适用于各类民用建筑的预评价、评价。

本条沿用本标准 2017 年版第 4.1.3 条。建筑场地内不应存在未达标排放或者超标排放的气态、液态或固态的污染源,例如: 易产生噪声的运动和营业场所,油烟未达标排放的厨房,煤气或工业废气超标排放的燃煤锅炉房,污染物排放超标的垃圾堆等。若有污染源应积极采取相应的治理措施并达到无超标污染物排放的要求。常见污染源需执行的现行标准包括《大气污染物综合排放标准》GB16297、《锅炉大气污染物排放标准》GB13271、《饮食业油烟排放标准》GB18483、《污水综合排放标准》GB8978、《医疗机构水污染物排放标准》GB18466、《污水排入城镇下水道水质标准》GB/T31962 等。若有污染源应积极采取相应的治理措施并达到无超标污染物排放的要求。建设项目还应通过合理布局或利用绿化等手段对周边污染源进行适当隔离。

本条的评价方法为:预评价查阅环评报告、治理措施分析报告;评价查阅环评报告、 治理措施分析报告。

8.1.7 城市生活垃圾应分类投放、收集、运输和处理,垃圾容器和收集点的设置应合理、规范并应与周围景观协调。

[条文说明]8.1.7 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 10.1.3 条、第 10.2.12 条、第 10.2.13 条基础上发展而来。城市生活垃圾的投放、收集、运输、处理以及垃圾收集设施的设置,应符合《山东省城市生活垃圾分类制度实施方案》鲁建发【2019】2 号的要求。评价时还应制定垃圾分类收集管理制度。

城市生活垃圾包括有害垃圾、可回收物、厨余垃圾、专业垃圾和其他垃圾五类。有害垃圾主要包括:废电池(镉镍电池、氧化汞电池、铅蓄电池等),废荧光灯管(日光灯

管、节能灯等),废温度计,废血压计,废药品及其包装物,废油漆、溶剂及其包装物,废杀虫剂、消毒剂及其包装物,废胶片及废相纸等。可回收物主要包括:废纸,废塑料,废金属,废包装物,废旧纺织物,废弃电器电子产品,废玻璃,废纸塑铝复合包装,大件垃圾等。厨余垃圾主要包括剩菜剩饭、骨头、菜根菜叶、果皮等可腐烂有机物。专业垃圾主要包括园林垃圾、装饰装修垃圾等行业产生的垃圾。

应据垃圾产生量和种类合理设置垃圾分类收集设施,其中有害垃圾必须单独收集、单独清运。垃圾收集设施规格和位置应符合国家有关标准的规定,其数量、外观色彩及标志应符合垃圾分类收集的要求,并置于隐蔽、避风处,与周围景观相协调。垃圾收集设施应坚固耐用,防止垃圾无序倾倒和露天堆放。同时,在垃圾容器和收集点布置时,重视垃圾容器和收集点的环境卫生与景观美化问题,做到密闭并相对位置固定,如果按规划需配垃圾收集站,应能具备定期冲洗,消杀条件,并能及时做到密闭清运。

本条的评价方法为: 预评价查阅相关设计文件、垃圾收集设施布置图; 评价查阅相 关竣工图、垃圾收集设施布置图, 投入使用的项目尚应查阅相关管理制度。

8.2 评分项

I 场地生态与景观

- 8.2.1 场地设计与建筑布局充分利用原有地形地貌,保护或修复场地生态环境,评价总分值为 10 分,并按下列规则分别评分并累计:
- 1 充分利用原有地形地貌进行场地设计以及建筑、生态景观的布局,得 3 分;
- 2 保护场地内原有的自然水域、湿地、植被等,保持场地内的生态系统与场地外生态系统的连贯性,得 2 分:
 - 3 采取净地表层土回收利用等生态补偿措施,得3分:
 - 4 根据场地实际状况,采取其他生态恢复或补偿措施,得2分。

[条文说明]8.2.1 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 4.2.12 条基础上发展而来。

第1款,建设项目应对场地的地形和场地内可利用的资源进行勘察,充分利用原有

地形地貌进行场地设计以及建筑、生态景观的布局, 尽量减少土石方量。

第2款,减少开发建设过程对场地及周边环境生态系统的改变,包括原有植被、水体、山体、地表行泄洪通道、滞蓄洪坑塘洼地等。在建设过程中确需改造场地内的地形、地貌、水体、植被等时,应在工程结束后及时采取生态复原措施,减少对原场地环境的改变和破坏。场地内外生态系统保持衔接,形成连贯的生态系统更有利于生态建设和保护。

第3款,表层土含有丰富的有机质、矿物质和微量元素,适合植物和微生物的生长,有利于生态环境的恢复。对于场地内未受污染的净地表层土进行保护和回收利用是土壤资源保护、维持生物多样性的重要方法。

第 4 款,基于场地资源与生态诊断的科学规划设计,在开发建设的同时采取符合场地实际的技术措施,并提供足够证据表明该技术措施可有效实现生态恢复或生态补偿,可参与评审。比如,在场地内规划设计多样化的生态体系,如湿地系统、乔灌草复合绿化体系、结合多层空间的立体绿化系统等,为本土动物提供生物通道和栖息场所。采用生态驳岸、生态浮岛等措施增加本地生物生存活动空间,充分利用水生动植物的水质自然净化功能保障水体水质。对于本条未列出的其他生态恢复或补偿措施,只要申请方能够提供足够相关证明文件即可认为满足得分要求。

本条的评价方法为:预评价查阅场地原地形图、相关设计文件(带地形的规划设计图、总平面图、竖向设计图、景观设计总平面图);评价查阅相关竣工图、生态补偿方案(植被保护方案及记录、水面保留方案、表层土利用相关图纸或说明文件等)、施工记录、影像材料。

8.2.2 规划场地地表和屋面雨水径流,对场地雨水实施外排总量控制,评价总分值为 10 分。场地年径流总量控制率达到 60%,得 3 分;达到 70%,得 7 分;达到 75%,得 10 分。

[条文说明]8.2.2 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 4. 2. 15 条基础上发展而来。年径流总量控制率定义为: 通过自然和人工强化的人渗、滞蓄、调蓄和收集回用,场地内累计一年得到控制的雨水量占全年总降雨量的比例。

外排总量控制包括径流减排、污染控制、雨水调节和收集回用等,应依据场地的实际情况,通过合理的技术经济比较,来确定最优方案。

从区域角度看,雨水的过量收集会导致原有水体的萎缩或影响水系统的良性循环。 要使硬化地面恢复到自然地貌的环境水平,最佳的雨水控制量应以雨水排放量接近自然 地貌为标准,因此从经济性和维持区域性水环境的良性循环角度出发,径流的控制率也 不宜过大而应有合适的量 (除非具体项目有特殊的防洪排涝设计要求)。出于维持场地生 态、基流的需要,年径流总量控制率不宜超过85%。

年径流总量控制率为 60%、70%、75%或 85%时对应的降雨量(日值)为设计控制 雨量, 参见表 10。设计控制雨量的确定要通过统计学方法获得。统计年限不同时, 不同 控制率下对应的设计雨量会有差异。考虑气候变化的趋势和周期性, 推荐采用最近30年 的统计数据, 特殊情况除外。

表 10 年径流总量控制率对应的设计控制雨量

城市	年均降雨量	年径》		区的设计控制雨量	t(mm)
初(1)	(mm)	60%	70%	75%	85%
济南	680	16.7	23.2	27.7	41.4
青岛	662	16.2	22.9	27.5	42.2
淄博	658	13.6	18.7	22.2	32.1
枣庄	787	17.8	25.1	29.8	43.9
东营	556	14.2	19.6	22.9	33.2
烟台	722	16.3	23.2	27.9	41.1
潍坊	588	13.6	18.5	21.7	31.2
济宁	695	18.2	25.7	30.5	44.4
泰安	697	17.0	23.1	27.1	38.3
威海	738	18.2	26.7	33.0	50.6
日照	849	17.5	24.5	29.0	43.1
临沂	840	18.3	26.6	30.6	46.0
德州	548	14.7	20.4	24.4	36.8
聊城	578	17.6	24.8	29.6	44.4
滨州	552	14.9	20.7	24.6	36.4
菏泽	625	16.3	22.5	26.6	38.3

设计时应根据年径流总量控制率对应的设计控制雨量来确定雨水设施规模和最终方 案,有条件时,可通过相关雨水控制利用模型进行设计计算;也可采用简单计算方法, 通过设计控制雨量、场地综合径流系数、总汇水面积来确定项目雨水设施需要的 总规模, 再分别计算滞蓄、调蓄和收集回用等措施实现的控制容积,达到设计控制雨量对应的控 制规模要求, 即判定得分。

对于地质、气候等自然条件特殊的地区,如湿陷性黄土地区等,应根据当地相关规定实施雨水控制利用。

本条的评价方法为:预评价查阅相关设计文件、年径流总量控制率计算书、设计控制雨量计算书、场地雨水综合利用方案或专项设计文件;评价查阅相关竣工图、年径流总量控制率计算书、设计控制雨量计算书、场地雨水综合利用方案或专项设计文件。

- 8.2.3 充分利用场地空间设置绿化用地,评价总分值为 16 分,并按下列规则评分:
 - 1 住宅建筑按下列规则分别评分并累计:
- 1) 绿地率超过规划指标 5%~10%, 得 8 分; 超过规划指标 10%及以上, 得 10 分;
- 2) 住宅建筑所在居住街坊内人均集中绿地面积,按表 8.2.3 的规则评分, 最高得 6 分。

人均集中绿地面积 $A_{\rm g}$ $({ m m}^2/{ m L})$		
新区建设	旧区改建	得分
0.50	0.35	2
$0.50 < A_{\rm g} < 0.60$	$0.35 < A_{\rm g} < 0.45$	4
$A_{\rm g} {\geqslant} 0.60$	$A_{ m g}{\geqslant}0.45$	6

表 8.2.3 住宅建筑人均集中绿地面积评分规则

- 2公共建筑按下列规则分别评分并累计:
- 1)公共建筑绿地率超过规划指标 5%~10%,得 8分,超过规划指标 10%及以上,得 10分:
 - 2)绿地向公众开放,得6分。

[条文说明]8.2.3 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 4.2.2 条的基础上发展而来。绿地率指建设项目用地范围内各类绿地面积的总和占该项目总用地面积的比率 (%)。绿地包括建设项目用地中各类用作绿化的用地。合理设置绿地可起到改善和美化环境、调节小气候、缓解城市热岛效应等作用。绿地率以及公共绿地的数量是衡量住区环境质量的重要指标之一。根据现行国家标准《城市居住区规划设计标准》GB 50180,集中绿地是指居住街坊配套建设、可

供居民休葱、开展户外活动的绿化场地。集中绿地应满足的基本要求: 宽度不小于 8m, 面积不小于 400 时,集中绿地应设置供幼儿、老年人在家门口日常户外活动的场地。并应有不少于 1/3 的绿地面积在标准的建筑日照阴影线 (即日照标准的等时线) 范围之外,并在此区域设置供儿童、老年人户外活动场地,为老年人及儿童在家门口提供日常游葱、及游戏活动场所。

为保障城市公共空间的品质、提高服务质量,每个城市对城市中不同地段或不同性质的公共设施建设项目,都制定有相应的绿地管理控制要求。本条鼓励公共建筑项目优化建筑布局,提供更多的绿化用地或绿化广场,创造更加宜人的公共空间;鼓励绿地或绿化广场设置休葱、娱乐等设施并定时向社会公众免费开放,以提供更多的公共活动空间。

本条的评价方法为: 预评价查阅规划许可的设计条件、相关设计文件、日照分析报告、绿地率计算书; 评价查阅相关竣工图、绿地率计算书。

- 8.2.4 室外吸烟区位置布局合理,评价总分值为9分,并按下列规则分别评分并累计:
- 1 室外吸烟区布置在建筑主出入口的主导风的下风向,与所有建筑出入口、 新风进气口和可开启窗扇的距离不少于 8m,且距离儿童和老人活动场地不少于 8m,得 5 分;
- 2 室外吸烟区与绿植结合布置,并合理配置座椅和带烟头收集的垃圾筒,从建筑主出入口至室外吸烟区的导向标识完整、定位标识醒目,吸烟区设置吸烟有害健康的警示标识,彼此间的距离不超过 30m,得 4 分。

[条文说明]8.2.4 本条适用于各类民用建筑的预评价、评价。场地范围内严格禁烟的项目,直接得9分。幼儿园、中小学校设置吸烟区不得分。

本条为新增条文。本标准第 5.1.1 条规定了室内禁止吸烟,同时需要为"烟民"设置专门的室外吸烟区,有效地引导有吸烟习惯的人群,走出室内,在规定的合理范围内吸烟,做到"疏堵结合"。室外吸烟区的选择还须避免人员密集区、有遮阴的人员聚集区,建筑出入口、雨篷等半开敞的空间、可开启窗户、建筑新风引入口、儿童年和老年人活动区域等位置,吸烟区内须配置垃圾筒和吸烟有害健康的警示标识。

本条的评价方法为: 预评价查阅相关设计文件: 评价查阅相关竣工图。

8.2.5 利用场地空间设置绿色雨水基础设施,评价总分值为 15 分,并按下列

规则分别评分并累计:

- 1 下凹式绿地、雨水花园等有调蓄雨水功能的绿地和水体的面积之和占绿地面积的比例达到 40%,得 3 分;达到 60%,得 5 分;
 - 2 衔接和引导不少于80%的屋面雨水进入地面生态设施,得3分;
 - 3 衔接和引导不少于80%的道路雨水进入地面生态设施,得4分;
 - 4 硬质铺装地面中透水铺装面积的比例达到 50%,得 3 分。

[条文说明]8.2.5 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 4.2.13 条的基础上发展而来。场地开发应遵循低影响开发原则,合理利用场地空间设置绿色雨水基础设施。绿色雨水基础设施有雨水花园、下凹式绿地、屋顶绿化、植被浅沟、截污设施、渗透设施、雨水塘、雨水湿地、景观水体等。绿色雨水基础设施有别于传统的灰色雨水设施(雨水口、雨水管道、调蓄池等),能够以自然的方式削减雨水径流、控制径流污染、保护水环境。

第1款,利用场地内的水塘、湿地、低洼地等作为雨水调蓄设施,或利用场地内设计景观(如景观绿地、旱溪和景观水体)来调蓄雨水,可实现有限土地资源综合利用的目标。能调蓄雨水的景观绿地包括下凹式绿地、雨水花园、树池、干塘等。

第2、3款,屋面雨水和道路雨水是建筑场地产生径流的重要源头,易被污染并形成污染源,故宜合理引导其进入地面生态设施进行调蓄、下渗和利用,并采取相应截污措施。地面生态设施是指下凹式绿地、植草沟、树池等,即在地势较低的区域种植植物,通过植物截流、土壤过滤滞留处理小流量径流雨水,达到控制径流污染的目的。洗衣废水若排入绿地,将危害植物的生长,物业应定期检查并杜绝阳台洗衣废水接入雨水管的情况发生。

第 4 款,雨水下渗也是削减径流和径流污染的重要途径之一。"硬质铺装地面"指场地中停车场、道路和室外活动场地等,不包括建筑占地(屋面人绿地、水面等。"透水铺装"指既能满足路用及铺地强度和耐久性要求,又能使雨水通过本身与铺装下基层相通的渗水路径直接渗入下部土壤的地面铺装系统,包括采用透水铺装方式或使用植草砖、透水沥青、透水混凝土、透水地砖等透水铺装材料。当透水铺装下为地下室顶板时,若地下室顶板设有疏水板及导水管等可将渗透雨水导人与地下室顶板接壤的实土,或地下室顶板上覆土深度能满足当地园林绿化部门要求时,仍可认定其为透水铺装地面,但覆土深度不得小于 600mm。评价时以场地硬质铺装地面中透水铺装所占的面积比例为依据。

申报材料中应提供场地铺装图,要求明确透水铺装地面位置、面积、铺装材料和透水铺装方式。

本条的评价方法为: 预评价查阅相关设计文件(含总平面图、景观设计图、室外给水排水总平面图等)、计算书:评价查阅相关竣工图、计算书。

II 室外物理环境

- 8.2.6 场地内的环境噪声优于现行国家标准《声环境质量标准》GB 3096 的要求,评价总分值为 10 分,并按下列规则评分:
- 1 环境噪声值大于 2 类声环境功能区标准限值,且小于或等于 3 类声环境功能区标准限值,得 5 分。
 - 2 环境噪声值小于或等于2类声环境功能区标准限值,得10分。

[条文说明]8.2.6 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 4.2.5 条基础上发展而来。国家标准《声环境质量标准》 GB 3096-2008 中对各类声环境功能区的环境噪声等效声级限值进行了规定,见表 11。

声环境功能区类别		时段		
		昼间	夜间	
	0 类	50	40	
	1 类	55	45	
	2 类	60	50	
	3 类	65	55	
4 类	4a 类	70	55	
	4b 类	70	60	

表 11 各类声环境功能区的环境噪声等效声级限值(dB(A))

本条评价时, 仅考虑室外环境噪声对人的影响, 不考虑建筑所处的声环境功能分区, 项目应尽可能地采取措施来实现环境噪声控制。本条既可以通过合理选址规划来实现, 也可以通过设置植物防护等方式对室外场地的超标噪声进行降噪处理实现。有研究表明, 10m 左右宽的乔木林可实现噪声 5dB (A) 的降低。

本条的评价方法为: 预评价查阅环评报告(含有噪声检测及预测评价或独立的环境噪声影响测试评估报告)、相关设计文件、声环境优化报告;评价查阅相关竣工图、声环境检测报告。

8.2.7 建筑及照明设计避免产生光污染,评价总分值为 10 分,并按下列规则分别评分并累计:

- 1 玻璃幕墙的可见光反射比及反射光对周边环境的影响符合《玻璃幕墙光热性能》 GB/T 18091 的规定,得 5 分;
- 2 室外夜景照明光污染的限制符合现行国家标准《室外照明干扰光限制规范》 GB/T 35626 和现行行业标准《城市夜景照明设计规范》 JGJ/T 163 的规定,得 5 分。

[条文说明]8.2.7 本条适用于各类民用建筑的预评价、评价。非玻璃幕墙建筑,第 1 款可直接得分。如不设夜景照明,第 2 款可直接得分。

本条在本标准 2017 年版第 4.2.4 条基础上发展而来。建筑物光污染包括建筑反射光(眩光)、夜间的室外夜景照明以及广告照明等造成的光污染。光污染产生的眩光会让人感到不舒服,还会使人降低对灯光信号等重要信息的辨识力,甚至带来道路安全隐患。

光污染控制对策包括降低建筑物表面(玻璃和其他材料、涂料)的可见光反射比,合理选配照明器具,采取防止溢光措施等。现行国家标准《玻璃幕墙光学性能》GB/T 18091将玻璃幕墙的光污染定义为有害光反射,对玻璃幕墙的可见光反射比作了规定。本条要求玻璃幕墙的可见光发射比及反射光对周边环境的影响符合《玻璃幕墙光热性能》GB/T 18091的规定。

夜景照明泛指除体育场场地、建筑工地和道路照明等功能性照明以外,所有室外公共活动空间或景物的夜间景观的照明,亦称景观照明。室外夜景照明设计应满足现行国家标准《室外照明干扰光限制规范》GB/T 35626 和现行行业标准《城市夜景照明设计规范》JGJ/T 163 中关于光污染控制的相关要求,并在室外照明设计图纸中体现。

本条的评价方法为:预评价查阅相关设计文件、光污染分析报告;评价查阅相关竣工图、光污染分析报告、检测报告。

- 8.2.8 场地内风环境有利于室外行走、活动舒适和建筑的自然通风,评价总分值为 10 分,并按下列规则分别评分并累计:
 - 1 在冬季典型风速和风向条件下,按下列规则分别评分并累计:
- 1) 建筑物周围人行区距地高 1.5m 处风速小于 5m/s,户外休息区、儿童娱乐区风速小于 2m/s,且室外风速放大系数小于 2,得 3分;
- 2)除迎风第一排建筑外,建筑迎风面与背风面表面风压差不大于 5Pa,得2分。
 - 2 过渡季、夏季典型风速和风向条件下,按下列规则分别评分并累计:

- 1) 场地内人活动区不出现涡旋或无风区, 得 3 分:
- 2) 50%以上可开启外窗室内外表面的风压差大于 0.5Pa, 得 2 分。

[条文说明]8.2.8 本条适用于各类民用建筑的预评价、评价。若只有一排建筑,本条第1款的第二项可直接得分。对于半下沉室外空间,此条也需要进行评价。

本条在本标准 2017 年版第 4.2.6 条基础上发展而来。本条人行区是指区域范围内功能或主要功能可供行人通行和停留的场所。冬季建筑物周围人行区距地 1.5m 高处风速小于 5m/s 是不影响人们正常室外活动的基本要求。建筑的迎风面与背风面风压差不超过5Pa. 可以减少冷风向室内渗透。

夏季、过渡季通风不畅在某些区域形成无风区或涡旋区,将影响室外散热和污染物消散。外窗室内外表面的风压差达到 0.5Pa 有利于建筑的自然通风。

利用计算流体动力学(CFD)手段通过不同季节典型风向、风速可对建筑外风环境进行模拟,其中来流风速、风向为对应季节内出现频率最高的风向和平均风速,室外风环境模拟使用的气象参数建议依次按地方有关标准要求、现行行业标准《建筑节能气象参数标准》JGJ/T 346、现行国家标准《民用建筑供暖通风与空气调节设计规范》GB 50736、《中国建筑热环境分析专用气象数据集》的优先顺序取得风向风速资料,数据选用尽可能使用地区内的气象站过去十年内的代表性数据,也可以采用相关气象部门出具逐时气象数据,计算"可开启外窗室内外表面的风压差"可将建筑外窗室内表面风压默认为 OPa,可开启外窗的室外风压绝对值大于 0.5Pa,即可判定此外窗满足要求。

室外风环境模拟应得到以下输出结果:

- 1 不同季节不同来流风速下,模拟得到场地内 1.5m 高处的风速分布。
- 2 不同季节不同来流风速下,模拟得到冬季室外活动区的风速放大系数。
- 3 不同季节不同来流风速下,模拟得到建筑首层及以上典型楼层迎风面与背风面(或主要开窗面)表面的压力分布。

对于不同季节,如果主导风向,风速不唯一(可参考《实用供热空调设计手册》陆 耀庆,中国建筑工业出版社出版;或当地气象局历史数据),宜分析两种主导风向下的情况。

本条的评价方法为: 预评价查阅相关设计文件、风环境分析报告等; 评价查阅相关 竣工文件、风环境分析报告。

8.2.9 采取措施降低热岛强度,评价总分值为 10 分,按下列规则分别评分并

累计:

- 1 场地中处于建筑阴影区外的步道、游憩场、庭院、广场等室外活动场地设有乔木、花架等遮阴措施的面积比例,住宅建筑达到 30%,公共建筑达到 10%,得 1分;住宅建筑达到 50%,公共建筑达到 20%,得 2分;
- 2 场地中处于建筑阴影区外的机动车道、路面、硬质广场的太阳光反射比不小于 0.4 或设有遮阴面积较大的行道树的路段长度超过 70%,得 2 分;
- 3屋顶的绿化面积、太阳能板水平投影面积以及太阳辐射反射系数不小于 0.4 的屋面面积合计达到 75%,得 3分。
- 4 夏季空调室外机直接排热较常规情况降低 50%以上,或冷却塔直接排热较常规情况降低 50%以上,得 1 分:
 - 5居住区绿地率大于35%,得1分;
 - 6居住区平均绿地斑块面积大于 200m², 得 1 分

[条文说明]8.2.9 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 4.2.7 条基础上发展而来。"热岛"现象在夏季出现,不仅会使人们高温中暑的概率变大,同时还容易形成光化学烟雾污染,并增加建筑的空调能耗,给人们的生活和工作带来负面影响。室外硬质地面采用遮阴措施可有效降低室外活动场地地表温度,减少热岛效应,提高场地热舒适度。

第1款中的室外活动场地包括:步道、庭院、广场、游葱、场和非机动车停车场。 不包括机动车道和机动车停车场,本款仅对建筑阴影区外的户外活动场地提出要求,建 筑阴影区为夏至日8:00~16:00 时段在他日照等时线内的区域。乔木遮阴面积按照成年 乔木的树冠正投影面积计算:构筑物遮阴面积按照构筑物正技影面积计算。

第2款,路用热反射涂料应执行现行国家标准《建筑用反射隔热涂料》GB/T25261, 耐沾污性处理后其太阳光反射比仍保持不少于0.4。

第3款中屋面可采用高反射率涂料等面层,本款计算绿化屋面面积、设有太阳能集 热板或光电板的水平技影面积、反射率高的屋面面积之和。

第 4 款夏季空调室外机直接排热较常规情况降低 50% 及以上或冷却塔直接排热较常规情况降低 50% 及以上,是指采用了地源或者水源排走余热或对余热加以回收利用的空调措施,或者夏季空调尖峰负荷时段有明显的降低直接排除废热的措施,包括围护结构和空调系统的节能措施等。针对本款有三种简化措施:

- 1) 夏季 50%的空调负荷由地源热泵或水源热泵承担;
- 2) 夏季空调负荷降低 20% 以上, 或 20% 以上空调负荷进行热回收;
- 3) 夏季空调尖峰负荷或40%以上空调冷负荷由蓄冷系统承担。

第 5 款,研究表明,不同片区平均温度的差别是由植被比例和建筑比例大小不同引起的。在居住片区中,增加或减少植被比例和建筑比例对热环境有重要的影响。对植被覆盖面积而言,要求住区绿地率大于 35%,被认为可以满足降低居住片区平均温度的条文要求。

第6款,有关学者对居住区的平均斑块形状指数、破碎度指数、平均斑块面积、斑块面积变异指数与平均温度进行相关性分析发现,居住区绿化建设中在努力关注绿化覆盖率的同时,应更加注重绿化质量,平均绿地斑块面积不宜过低,200平方米以上为宜。

本条的评价方法为: 预评价查阅相关设计文件、日照分析报告、计算书; 评价查阅相关竣工图、日照分析报告、计算书、材料性能检测报告。

9 提高与创新

9.1 一般规定

9.1.1 绿色建筑评价时,应按本章规定对提高与创新项进行评价。

[条文说明]9.1.1 绿色建筑全寿命期内各环节和阶段,都有可能在技术、产品选用和管理方式上进行性能提高和创新。为鼓励性能提高和创新,在各环节和阶段采用先进、适用、经济的技术、产品和管理方式,本次修订增设了相应的评价项目。比照"控制项"和"评分项",本标准中将此类评价项目称为"加分项"。

本次修订增设的加分项内容,有的在属性分类上属于性能提高,如进一步降低建筑综合能耗;有的在属性分类上属于创新,如传承地域建筑文化、建筑信息模型(BIM)、碳排放分析计算等,鼓励在技术、管理、生产方式等方面的创新。

9.1.2 提高与创新项得分为加分项得分之和, 当得分大于 100 分时, 应取为 100 分。

[条文说明]9.1.2 加分项的评定结果为某得分值或不得分。考虑到与绿色建筑总得分要求的平衡,以及加分项对建筑绿色性能的贡献,本标准对加分项附加得分作了不大于100分的限制。某些加分项是对前面章节中评分项的提高,符合条件时,加分项和相应评分项均可得分。

9.2 加分项

I 性能提高

9.2.1 采取措施进一步降低建筑供暖空调系统的能耗,评价总分值为 30 分。 建筑供暖空调系统能耗相比国家现行有关建筑节能标准降低 40%,得 10 分;每 再降低 10%,再得 5 分,最高得 30 分。

[条文说明]9.2.1 本条适用于各类民用建筑的预评价、评价。

本条为新增条文。鼓励项目根据所在地的气候、资源特点,在本标准第7.2.4条和第7.2.8条的基础上,通过进一步提升建筑围护结构热工性能、提高供暖空调设备系统能效,

以最少的供暖空调能源消耗提供舒适室内环境。本条可与本标准第7.2.4条、第7.2.8条同时得分。

应根据行业标准《民用建筑绿色性能计算标准》JGJ/T 449-2018 第 5.3 节的相关规定,分别计算设计建筑及满足国家现行建筑节能设计标准规定的参照建筑的供暖空调能耗,计算其节能率并进行得分判定。建筑供暖空调系统能耗相比国家现行有关建筑节能标准降低 40%,得 10 分;在此基础上,每再降低 10%,再多得 5 分,本条最高得分不超过 30 分。

本条文涉及的国家和地方建筑节能设计标准,包括现行国家标准《公共建筑节能设计标准》GB 50189、山东省地方标准《公共建筑节能设计标准》DB37/5155 和现行行业标准《严寒和寒冷地区居住建筑节能设计标准》JGJ 26、山东省地方标准《居住建筑节能设计标准》DB37/5026 等。

本条的评价方法为:预评价查阅相关设计文件(围护结构施工详图、相关设计说明)、 节能计算书、建筑综合能耗节能率分析报告;评价查阅相关竣工图(围护结构施工详图、 相关设计说明)、节能计算书、建筑综合能耗节能率分析报告。

- 9.2.2 应用超低能耗、近零能耗、零能耗建筑技术标准进行建筑设计、施工及验收,评价总分值为 20 分,并按下列规则评分:
 - 1 项目按照超低能耗建筑技术标准进行建筑设计、施工及验收,得10分。
 - 2 项目按照近零能耗建筑技术标准进行建筑设计、施工及验收,得15分。
 - 3 项目按照零能耗建筑技术标准进行建筑设计、施工及验收,得 20 分。

[条文说明]9.2.2 本条适用于各类民用建筑的评价。

本条在本标准 2017 年版第 11.2.3 条基础上发展而来, 意在推行低能耗建筑的发展。 低能耗建筑不仅能耗低, 而且其舒适度水平大大优于传统房屋。

超低能耗、近零能耗、零能耗建筑作为实施建筑能效提升工程的重点内容,可大幅 度降低建筑能耗,为解决城市的能源消费以及大气污染问题带来非常直接的效益。

近零能耗建筑是适应气候特征和场地条件,通过被动式建筑设计最大幅度降低建筑供暖、空调、照明需求,通过主动技术措施最大幅度提高能源设备与系统效率,充分利用可再生能源,以最少的能源消耗提供舒适室内环境,且其室内环境参数和能耗指标符合国家标准《近零能耗建筑技术标准》GB/T 51350-2019 要求的建筑物。近零能耗公共建筑能耗水平应较国家标准《公共建筑节能设计标准》GB 50189-2015 降低 60%以上:近

零能耗居住建筑能耗水平应较行业标准《严寒和寒冷地区居住建筑节能设计标准》JGJ 26-2010 降低 70%~75% 以上。

超低能耗建筑是近零能耗建筑的初级表现形式,其室内环境参数与近零能耗建筑相同,能效指标略低于近零能耗建筑,其建筑能耗水平应较国家标准《公共建筑节能设计标准》GB 50189-2015 和行业标准《严寒和寒冷地区居住建筑节能设计标准》JGJ 26-2010降低 50%以上。

零能耗建筑是近零能耗建筑的高级表现形式,其室内环境参数与近零能耗建筑相同, 充分利用建筑本体和周边的可再生能源资源,使可再生能源年产能大于或等于建筑全年 全部用能的建筑。

按照现行国家和山东省超低能耗、近零能耗、零能耗建筑相关标准的技术要求进行建筑设计、施工及验收的项目可获得该条相应得分。

本条的评价方法为:查阅相关竣工图、施工资料、建筑整体气密性检测报告,并现场核实。

- 9.2.3 场地绿容率不低于 3.0, 评价总分值为 5 分, 并按下列规则评分:
 - 1场地绿容率计算值不低于3.0,得3分;
 - 2场地绿容率实测值不低于3.0,得5分。

[条文说明]9.2.3 本条适用于各类民用建筑的预评价、评价。

本条为新增条文。绿容率是指场地内各类植被叶面积总量与场地面积的比值。叶面积是生态学中研究植物群落、结构和功能的关键性指标,它与植物生物量、固碳释氧、调节环境等功能关系密切,较高的绿容率往往代表较好的生态效益。目前常见的绿地率是十分重要的场地生态评价指标,但由于乔灌草生态效益的不同,绿地率这样的面积型指标无法全面表征场地绿地的空间生态水平,同样的绿地率在不同的景观配置方案下代表的生态效益差异可能较大,因此,绿容率可以作为绿地率的有效补充。

为了合理提高绿容率,可优先保留场地原生树种和植被,合理配置叶面积指数较高的树种,提倡立体绿化,加强绿化养护,提高植被健康水平。绿化配置时避免影响低层用户的日照和采光。

本条的绿容率可采用如下简化计算公式:绿容率=[Σ(乔木叶面积指数×乔木投影面积×乔木株数)+灌木占地面积×3+草地占地面积×1]/场地面积。冠层稀疏类乔木叶面积指数按2取值, 冠层密集类乔木叶面积指数按4取值, 乔木投影面积按苗木表数据进

行计算, 场地内的立体绿化均可纳入计算。

除以上简化计算方法外,鼓励有条件地区采用当地建设主管部门认可的常用植物叶面积调研数据进行绿容率计算;也可提供以实际测量数据为依据的绿容率测量报告,测量时间可为全年叶面积较多的季节。

本条的评价方法为:预评价查阅相关设计文件(绿化种植平面图、苗木表等)、绿容率 计算书;评价查阅相关竣工图、绿容率计算书或植被叶面积测量报告、相关证明材料。

9.2.4 在设计工况下,集中空调系统的冷源系统能效系数(EER-sys)比山东省现行工程建设标准《绿色建筑设计规范》 DB37/T 5043 限定值的提高幅度不低于 10%,评价分值为 10 分。

[条文说明]9.2.4 本条适用于各类公共建筑的预评价、评价。

本条为新增条文。2019 年 6 月 14 日,发改委联合工业和信息化部、财政部、生态环境部、住房城乡建设部、市场监管总局、国管局等六大部门发布了"关于印发《绿色高效制冷行动方案》的通知(发改环资〔2019〕1054 号)",要求各部门严格执行。根据这个方案,到 2022 年,家用空调、多联机等制冷产品的市场能效水平提升 30%以上,绿色高效制冷产品市场占有率提高 20%,实现年节电约 1000 亿千瓦时。到 2030 年,大型公共建筑制冷能效提升 30%,制冷总体能效水平提升 25%以上,绿色高效制冷产品市场占有率提高 40%以上,实现年节电 4000 亿千瓦时左右。

以水冷式电制冷冷水机组为制冷主机的集中空调系统,是山东省各地公共建筑空调系统的主要形式,其空调冷源系统主要包括制冷机、冷水循环泵、冷却水循环泵和冷却塔及其管道系统等,其能耗占集中空调系统能耗的60%~90%,占比很大,主要制冷设备节能空间达30%-50%。因此,通过设计选用绿色高效节能的空调冷水系统与冷水机组等设备及监控系统,并采取先进的施工方法和科学的运行管理措施,提升集中空调水冷式电冷源系统的能源利用效率,对提高我省建筑的能效水平、实现建筑节能,具有显著的作用。

水冷式电制冷集中空调系统的冷源系统能效系数,是指采用冷却塔散热的水冷式电制冷冷源系统,在制冷机名义工况、冷水泵、冷却水泵和冷却塔设计工况下,制冷量与制冷机、冷水泵、冷却水泵和冷却塔的净输入能量之和的比值。对于多台冷水机组、冷水泵、冷却水泵和冷却塔组成的冷水系统,应将实际参与运行的所有设备的名义制冷量和耗电功率综合统计计算,当机组类型不同时,其限定值应按冷量加权的方式确定。

水冷式电制冷集中空调系统的冷源系统,应在设计阶段计算其设计工况下的能效系数,对冷源系统全年平均设计能效系数预测分析,并确定冷源系统全年平均运行能效系数的目标值;在施工和运行使用阶段应按冷源系统全年平均运行能效系数的目标值进行工程实施;在建筑投入使用后宜进行空调冷源系统运行能效系数评价,并在不少于一个完整的供冷期之后对空调冷源系统全年平均运行能效进行评价。

水冷式电制冷集中空调冷源系统,应对其设计、施工、竣工与使用环节进行质量控制,以保证系统能效水平。

本条的评价方法为:预评价查阅相关设计文件、计算分析报告(包括负荷计算、系统配置、冷水机组的名义制冷量、冷源系统总耗电量、运行模式等方面);评价查阅相关竣工图、主要产品型式检验报告,查看主要设备的运行记录(包括空调期设备的运行时间、供回水温度、实际的制冷量和耗电量等),并现场核实。

9.2.5 合理采用蓄冷蓄热系统,评价分值为5分。

[条文说明]9.2.5 本条文适用于各类民用建筑的预评价、评价。

本条沿用本标准 2017 版第 5.2.17 条。

蓄冷蓄热技术虽然从能源转换和利用本身讲并不节约,但是其对于昼夜电力峰谷差 异的调节具有积极的作用,能够满足城市能源结构调整和环境保护的要求。为此,宜根 据当地能源政策、峰谷电价差(不低于 2.5 倍)、能源紧缺状况和设备系统特点等选择采 用。

当筑采用蓄冷蓄热系统满足下列条件之一即可:

- 1 用于蓄冷的电驱动蓄能设备提供的设计日的冷量应达到 30%;参考现行山东省工程建设标准《公共建筑节能设计标准》DB37/5155-2019 第 4.2.2 条的强制性规定,利用蓄热式电加热装置的蓄能设备能保证高峰和平段时间不运行:
- 2 最大限度地利用谷电,谷电时段蓄冷设备全负荷运行的80%应能全部蓄存并充分利用。

本条的评价方法为: 预评价查阅相关设计文件、计算分析报告、当地峰谷电价证明 材料;评价查阅相关竣工图,当地峰谷电价证明材料、计算分析报告、主要产品型式检 验报告。

9.2.6 保护性开发利用地下热水资源,评价分值为 10 分。

[条文说明]9.2.6 本条适用于有地下热水资源的各类民用建筑的预评价、评价。

本条沿用本标准 2017 版第 11.2.6 条。地下热水资源是一种清洁无污染的绿色资源, 山东省地下热水资源丰富,应进行保护性开发利用,严禁破坏、污染地下热水资源。

开采地下热水资源,应对地下热水的开采规模、取水、退水对生态环境的影响等进行详细论证,在充分利用地热资源的同时,利用可靠的系统工艺实现有效的处理、回灌和监控,不应对生态环境的不良影响,对保护资源可持续利用意义重大,并应取得当地政府主管部门的许可。

本条的评价方法为: 预评价查阅相关设计文件、环评报告、地下热水资源利用可行性报告; 评价查阅相关竣工图纸、设计说明等, 并现场核实。

- 9.2.7 采用符合工业化建造要求的结构体系与建筑构件,评价分值为 10 分, 并按下列规则评分:
 - 1主体结构采用钢结构,得10分。
- 2 主体结构采用装配式混凝土结构,地上部分预制构件应用混凝土体积占混凝土总体积的比例达到 35%,得 5分;达到 50%,得 10分。

[条文说明]9.2.7 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 7.2.5 条基础上发展而来。钢结构及装配式混凝土结构符合减少人工、减少消耗、提高质量、提高效率的工业化建造要求。对于装配式混凝土结构的预制构件混凝土体积计算,无竖向立杆支撑叠合楼盖的现浇混凝土部分可按预制构件考虑,预制剪力墙的边缘构件现浇部分可按预制构件考虑,叠合剪力墙的现浇混凝土部分可按 0.5 倍折算为预制构件。模壳墙的现浇混凝土部分可按 0.5 倍折算为预制构件。

本条的评价方法为: 预评价查阅相关设计文件、计算书; 评价查阅相关竣工图、计算书。

9.2.8 绿色建材应用比例不少于 70%,且采用 4 类及以上的绿色建材,且绿色建材达到三星级标准认证或产品通过绿色产品认证,评价分值为 10 分。

[条文说明]9.2.8 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 7.2.12、11.2.8 条基础上发展而来。为加快绿色建材推广应用,规范绿色建材评价标识管理,更好地支撑绿色建筑发展,市场监管总局办公厅、住房和城乡建设部办公厅和工业和信息化部办公厅联合下发了"关于印发《绿色建材产品认证实施方案》的通知"(市监认证 [2019] 61 号)。

绿色建材是指在全生命周期内可减少对天然资源消耗和减轻对生态环境影响, 具有

"节能、减排、安全、便利和可循环"特征的建材产品,其不仅对建材本身的健康、环保、安全等属性有一定的要求,还要求原材料生产、加工等全寿命周期的各个环节贯彻"绿色"意识并实施"绿色"技术。绿色建材应用比例为单体工程中绿色建材重量与建材总重量的比值。当某类建筑材料,如卫生陶瓷全部采用绿色卫生陶瓷时,方可认为采用了1类绿色建材。

"绿色产品"是指在全生命周期过程中,符合环境保护要求,对生态环境和人体健康 无害或危害小、资源能源消耗少、品质高的产品。"绿色产品认证"是由认证机构依照国 家绿色产品认证相关要求,确定相关产品在全生命周期中符合特定的资源能源消耗少、 污染物排放低、低毒少害、易回收处理和再利用、健康安全和质量品质高等指标要求, 允许获证产品使用绿色产品标识的合格评定活动。企业要获得绿色产品认证,必须通过 环境影响评价验收、中国森林认证和质量、环境、职业健康安全管理三体系认证,其生 产的产品要符合绿色产品评价的要求,且在实施认证过程中全面考察企业的质量保证能 力和生产管理水平。

本条的评价方法为:预评价查阅设计文件中对绿色建材或绿色产品的应用要求及应 用比例计算书;评价评价查阅材料决算清单、建材的供销合同、绿色建材或绿色产品标 识证书、绿色建材或绿色产品应用比例计算书,并现场核实。

9.2.9 综合开发利用海水资源,节约、替代淡水资源,得 10 分。

[条文说明]9.2.9 本条适用于各类民用建筑的预评价、评价。

本条沿用本标准 2017 版第 11.2.17 条。山东省是我国淡水资源紧缺的省份之一,其占有量仅为全国平均占有量的六分之一,而山东具有丰富的海水资源,海水利用是解决我省沿海地区淡水紧缺的重要措施之一。国家发展和改革委员会、国家海洋局、财政部联合发布了《海水利用专项规划》,这个规划涉及的海水利用包括:海水淡化、海水直接利用、海水化学资源利用,重点是海水淡化和海水直接利用。

海水淡化是利用海水脱盐生产淡水的技术,主要面临技术、成本和污染控制(如淡化过程中浓盐水的处理)几方面的问题,需要与资源综合利用相结合,统筹规划,实现循环利用,防止对环境造成污染。

海水直接利用主要包括海水冷却和大生活用海水,是直接采用海水替代淡水的开源节流技术,可以置换冷却用水和生活杂用水(如冲厕、消防用水)。城市生活使用海水必须在现有供排水系统之外另建海水系统,该系统由供水站(泵房)、配水管、调蓄水池等

组成,不同用途的供水应处理至相应水质标准的要求才能使用。

海水直接利用系统应根据海水水文状况、温度变化规律等进行设计,与海水接触的设备及管道,应具有耐海水腐蚀性能,应采取防止海洋生物附着的措施,对海水进行过滤、杀菌等处理。

本条的评价方法为:预评价查阅海水供、排水系统相关设计文件(设计图纸及计算书)、当地相关主管部门的许可证;评价查阅相关竣工图纸、查阅用水计量记录、水质检测报告,并现场核实。

- 9.2.10 按照绿色施工的要求进行施工和管理,评价总分值为 20 分,并按下列规则分别评分并累计:
 - 1 获得绿色施工优良等级或绿色施工示范工程认定,得8分;
 - 2 采取措施减少预拌混凝土损耗,损耗率降低至 1.0%,得 4 分;
 - 3 采取措施减少现场加工钢筋损耗,损耗率降低至 1.5%,得 4 分;
 - 4 现浇混凝土构件采用铝模等免墙面粉刷的模板体系,得 4 分。

[条文说明]9.2.10 本条适用于各类民用建筑的评价。

本条在本标准2017年版第9.2.8、9.2.9条的基础上发展而来。

第 1 款, 绿色施工是指在工程项目施工周期内严格进行过程管理, 在保证质量、安全等基本要求的前提下, 通过科学管理和技术进步, 最大限度地节约资源(节材、节水、节能、节地)、保护环境和减少污染, 实现环保、节约、可持续发展的施工工程。目前, 我国国家标准层面发布实施了国家标准《建筑工程绿色施工规范》GB/T 50905-2014、《建筑工程绿色施工评价标准》GB/T 50640-2010; 我省也发布实施了《山东省建筑与市政工程绿色施工评价标准》DB37/T 5086-2016、《山东省建筑与市政工程绿色施工评价标准》DB37/T 5087-2016。现行国家标准《建筑工程绿色施工评价标准》GB/T 50640 规定绿色施工的等级应分为不合格、合格和优良,《山东省建筑与市政工程绿色施工评价标准》DB37/T 5087 规定绿色施工的等级应分为不合格、合格、良好和优秀。本条将主管部门授予的绿色施工"最高"(优良、优秀)等级认定或"绿色施工示范工程"认定作为评分依据。

第 2 款,减少混凝土损耗、降低混凝土消耗量是施工中节材的重点内容之一,我国各地方的工程量预算定额,一般规定预拌混凝土的损耗率是 1.5%,但在很多工程施工中超过了 1.5%,甚至达到了 2%~3%,因此有必要对预拌混凝土的损耗率提出要求。

第3款,钢筋是混凝土结构建筑的大宗消耗材料。钢筋浪费是建筑施工中普遍存在的问题,设计、施工不合理都会造成钢筋浪费。我国各地方的工程量预算定额,根据钢筋的规格不同,一般规定的损耗率为 2.5%~4.5%。根据对国内施工项目的初步调查,施工中实际钢筋浪费率约为 6%。因此有必要对钢筋的损耗率提出要求。

第 4 款, 现浇混凝土构件, 施工时采用铝模体系, 可确保构件表面的平整度, 避免 二次找平粉刷, 从而节约材料, 降低材料消耗。

本条的评价方法为:评价查阅绿色施工实施方案、绿色施工等级或绿色施工示范工程的认定文件,混凝土用量结算清单、预拌混凝土进货单,施工单位统计计算的预拌混凝土损耗率,现场钢筋加工的钢筋工程量清单、钢筋用量结算清单,钢筋进货单,施工单位统计计算的现场加工钢筋损耗率、铝模材料设计方案及施工日志。

II 创新

- 9.2.11 采用建设工程质量潜在缺陷保险产品,评价总分值为 20 分,并按下列规则分别评分并累计:
- 1 保险承保范围包括地基基础工程、主体结构工程、屋面防水工程和其他土建工程的质量问题,得 10 分;
- 2 保险承保范围包括装修工程、电气管线、上下水管线的安装工程,供热、 供冷系统工程的质量问题,得 10 分。

[条文说明]9.2.11 本条适用于各类民用建筑的预评价、评价。

本条为新增条文。建设工程保险在国际上已经是一种较为成熟的制度,比如法国的潜在缺陷保险(IDI)制度、日本的住宅性能保证制度等。保险一般承保工程竣工验收之日起一定年限(如10年)之内因主体结构或装修设备构件存在缺陷发生工程质量事故而给消费者造成的损失,通过保险产品公司约束开发商必须对建筑质量提供一定年限的长期保证,当建筑工程出现了保证书中列明的质量问题时,通过保险机制保证消费者的权益。通过推行建设工程质量保险制度,提高建设工程质量。

本条的评价方法为: 预评价查阅建设工程质量保险产品投保计划; 评价查阅建设工程质量保险产品保单, 核查其约定条件和实施情况。

9.2.12 合理选用废弃场地进行建设,或充分利用尚可使用的旧建筑,评价分值为 5 分。

[条文说明]9.2.12 本条适用于各类民用建筑的预评价、评价。

本条沿用本标准 2017 版第 11.2.13 条。虽然选用废弃场地、利用旧建筑具体技术存在不同,但同属于项目策划、规划前期均需考虑的问题,而且基本不存在两点内容可同时达标的情况,故进行了条文合并处理。

我省城市可建设用地日趋紧缺,对废弃地进行改造并加以利用是节约集约利用土地的重要途径之一。利用废弃场地进行绿色建筑建设,在技术难度、建设成本方面都需要付出更多努力和代价。因此,对于优先选用废弃地的建设理念和行为进行鼓励。本条所指的废弃场地主要包括裸岩、石砾地、盐碱地、沙荒地、废窑坑、废旧仓库或工厂弃置地等。绿色建筑可优先考虑合理利用废弃场地,采取改造或改良等治理措施,对土壤中是否含有有毒物质进行检测与再利用评估,确保场地利用不存在安全隐患、符合国家、我省相关标准的要求。

本条所指的"尚可利用的旧建筑"系指建筑质量能保证使用安全的旧建筑,或通过少量改造加固后能保证使用安全的旧建筑。虽然目前多数项目为新建,且多为净地交付,项目方很难有权选择利用旧建筑。但仍需对利用"可利用的"旧建筑的行为予以鼓励,防止大拆大建。对于一些从技术经济分析角度不可行、但出于保护文物或体现风貌而留存的历史建筑,由于有相关政策或财政资金支持,因此不在本条中得分。

本条的评价方法为: 预评价查阅相关设计文件、环评报告、旧建筑使用专项报告; 评价查阅相关竣工图、环评报告、旧建筑利用专项报告、检测报告,并现场核实。

9.2.13 应用建筑信息模型(BIM)技术,评价总分值为 15 分。在建筑的规划设计、施工建造和运行维护阶段中的一个阶段应用,得 5 分;两个阶段应用,得 10 分;三个阶段应用,得 15 分。

[条文说明]9.2.13 本条适用于各类民用建筑的预评价、评价。

本条沿用本标准 2017 版第 11.2.14 条。建筑信息模型(BIM)是建筑业信息化的重要支撑技术。BIM 是在 CAD 技术基础上发展起来的多维模型信息集成技术。BIM 是集成了建筑工程项目各种相关信息的工程数据模型,能使设计人员和工程人员能够对各种建筑信息做出正确的应对,实现数据共享并协同工作。

BIM 技术支持建筑工程全寿命期的信息管理和利用。在建筑工程建设的各阶段支持基于BIM 的数据交换和共享,可以极大地提升建筑工程信息化整体水平,工程建设各阶段、各专业之间的协作配合可以在更高层次上充分利用各自资源,有效地避免由于数据不通畅带来的重复性劳动,大大提高整个工程的质量和效率,并显著降低成本。对 BIM

模型构件设置构件(包括设备、材料等)编码、安装时间、厂商信息、维修周期等运维要素和数据,可对后期进行有效的物业运维管理。

本条的评价方法为:预评价查阅规划设计阶段的 BIM 技术应用报告;评价查阅规划设计、施工建造、运行维护阶段的 BIM 技术应用报告。

9.2.14 进行建筑碳排放计算分析,采取措施降低单位建筑面积碳排放强度,评价分值为 10 分。

[条文说明]9.2.14 本条适用于各类民用建筑的预评价、评价。

本条沿用本标准 2017 年版第 11.2.15 条。建筑碳排放计算及其碳足迹分析,不仅有助于帮助绿色建筑项目进一步达到和优化节能、节水、节材等资源节约目标,而且有助于进一步明确建筑对于我国温室气体减排的贡献量。经过多年的研究探索,我国也有了较为成熟的计算方法和一定量的案例实践。在计算分析基础上,再进一步采取相关节能减排措施降低碳排放,做到有的放矢。绿色建筑作为节约资源、保护环境的载体,理应将此作为一项技术措施同步开展。

建筑碳排放计算分析包括建筑固有的碳排放量和标准运行工况下的资源消耗碳排放量。设计阶段的碳排放计算分析报告主要分析建筑的固有碳排放量,竣工验收后主要分析在标准运行工况下建筑的资源消耗碳排放量。

本条的评价方法为: 预评价查阅项目设计阶段的碳排放计算分析报告,以及相应措施; 评价查阅项目竣工验收后的碳排放计算分析报告,以及相应措施的运行情况。

9.2.15 进行建筑全寿命期成本分析计算,评价分值为10分。

[条文说明]9.2.15 本条适用于各类民用建筑的预评价、评价。

本条沿用本标准 2017 年版第 11.2.16 条。20 世纪 70 年代,国外开始在建筑领域应用全寿命期成本分析技术,积极发展推广一些低能耗、高能效的建筑,积累了一定经验。目前美国、英国等国家,陆续制定了一系列有关建筑全生命期成本分析的技术规范。

本条在绿色建筑评价中引人建筑全生命期成本分析,旨在引领绿色建筑关注经济要素在建筑全生命期的重要性,但我国建筑全生命期成本的分析技术尚处于初级研究阶段,与国外水平相比还有一定的差距,尤其在建筑全生命期成本的影响因素、参数设定、计算方法、评价指标等方面的经验较少。目前国内暂无相关的标准规范及统一的分析方法,因此鼓励申请评价方结合项目具体实际进行研究分析。

建筑全生命期成本主要包括四个方面的内容: 决策设计成本、施工建造成本、维护

使用成本、拆除成本。建筑全生命期成本分析报告中应明确所参考的标准和分析方法。

本条的评价方法为:预评价查阅项目设计阶段的建筑全生命期成本分析报告,审查其合理性;评价查阅项目竣工验收后的建筑全生命期成本分析报告,审查其合理性。

9.2.16 大型公共建筑项目出具建设项目合理用能的评估报告,评价分值为 10 分。

[条文说明]9.2.16 本条适用于大型公共建筑的预评价、评价。

本条沿用本标准 2017 年版第 11.2.11 条。《山东省民用建筑节能条例》第十七条规定: "住房城乡建设主管部门对大型公共建筑项目提出意见,应当依据建筑节能评估机构出具的建设项目合理用能评估报告作出。"目的是促进科学合理利用能源,从源头上杜绝能源浪费,提高能源利用效率。

大型公共建筑项目节能评估报告应至少当包括以下内容:

- 1项目概况和评估依据;
- 2项目所在地能源供应条件及项目对所在地能源供应情况的影响:
- 3建筑围护结构保温设计方案及材料评估:
- 4建筑节水设计方案评估:
- 5建筑可再生能源等新能源利用方案评估:
- 6建筑用能设备系统设计方案评估:
- 7建筑电气系统(含分项计量)设计方案评估:
- 8建筑能源消耗种类数量、能源消费结构、能源利用效率及能源管理情况分析:
- 9建筑节能效果分析和节能措施建议:
- 10 评估结论。

评估报告应由具备资质的民用建筑能效测评机构来完成。

本条的评价方法为: 预评价查阅项目合理用能的评估报告; 评价查阅项目合理用能 的评估报告、相关运行记录, 并现场核实。

9.2.17 采取节约资源、保护生态环境、保障安全健康、智慧友好运行、传承历史文化等其他创新,并有明显效益,评价总分值为 40 分。每采取一项,得 10 分,最高得 40 分。

[条文说明]9.2.18 本条适用于各类民用建筑的预评价、评价。

本条在本标准 2017 年版第 11.2.18 条基础上发展而来。本条主要是对前文未提及的

其他技术和管理创新予以鼓励。目的是鼓励和引导项目采用不在本标准所列的绿色建筑 评价指标范围内,但可在保护自然资源和生态环境、节约资源、减少环境污染、提高健康和宜居性、智能化系统建设、传承历史文化等方面实现良好性能提升的创新技术和措施,以此提高绿色建筑技术水平。

当某项目采取了创新的技术措施,并提供了足够证据表明该技术措施可有效提高环境友好性,提高资源与能源利用效率,实现可持续发展或具有较大的社会效益时,可参与评审。项目的创新点应较大地超过相应指标的要求,或达到合理指标但具备显著降低成本或提高工效等优点。本条未列出所有的创新项内容,只要申请方能够提供足够相关证明,并通过专家组的评审即可认为满足要求。

本条的评价方法为: 预评价查阅相关设计文件、分析论证报告及相关证明材料; 评价查阅相关设计文件、分析论证报告及相关证明材料。

附录 A 建筑能源利用效率核查表

项目名称	K					
项目地址	Ŀ					
建设单位	Ĺ					
设计单位	Ĺ					
施工单位	Ĺ					
建筑类型			建筑面积(m²)		建筑层数	
建筑外表面积 F ₀ (m ²)			建筑体积 V ₀ (m³)		体形系数 $S = F_0/V_0$	
执行的 建筑节能标准				气候区域		
核査内容标准要素		标准要求	核査结果	核査资料		
围护结构	外墙		传热系数			建筑外墙节能构造现 场实体检验报告或外墙传热系数检验报告
	外窗		传热系数			建筑门窗节能性能标 识证书和计算报告或 见证取样检验报告
			气密性能			外窗气密性能现场实 体检验报告
供暖和空调系统	散热器		单位散热量			
			金属热强度			
			供冷量			
			供热量			见证取样检验报告
		孔盘管 孔组	风量			
			功率			
			噪声			

照明系统	照明光源	初始光效				
	照明灯具	镇流器能效值				
		效率			见证取样检验报告	
	照明设备	功率				
		功率因素				
		谐波含量值				
太阳能光 热系统	集热设备	热性能			见证取样检验报告	
	室内平均温	度				
	通风、空调风量	(包括新风) 系统的	J			
	各风口的风	星里				
	风道系统单	位风量耗功率				
设备系统	空调机组的	水流量			节能性能检验报告	
	空调系统冷 循环流量	水、热水、冷却水的	J			
	室外供暖管	网的水力平衡度				
	室外供暖管	网热损失率				
	照度与照明					
核查机构意	见:					
核查人员		核查机构 (签章)		日期		

本标准用词说明

- 1为便于在执行本标准条文时区别对待,对要求严格程度不同的用词说明如下:
 - 1) 表示很严格, 非这样做不可的:

正面词采用"必须",反面词采用"严禁";

2) 表示严格,在正常情况下均应这样做的:

正面词采用"应", 反面词采用"不应"或"不得";

3) 表示允许稍有选择, 在条件许可时首先这样做的:

正面词采用"宜",反面词采用"不宜";

- 4) 表示有选择,在一定条件下可以这样做的,可采用"可"。
- 2条文中指明应按其他有关标准执行的写法为:"应符合……的规定"或"应按……执行"。

引用标准名录

- 1 《声环境质量标准》GB 3096
- 2 《生活饮用水卫生标准》GB 5749
- 3 《玻璃幕墙光热性能》GB/T 18091
- 4 《室内空气质量标准》GB/T 18883
- 5 《灯和灯系统的光生物安全性》GB/T 20145
- 6 《LED 室内照明应用技术要求》GB/T 31831
- 7 《室外照明干扰光限制规范》GB/T 35626
- 8 《建筑照明设计标准》GB 50034
- 9 《民用建筑隔声设计规范》GB 50118
- 10 《公共建筑节能设计标准》GB 50189
- 11 《绿色建筑评价标准》GB/T 50378
- 12 《民用建筑节水设计标准》GB 50555
- 13 《民用建筑供暖通风与空气调节设计规范》GB 50736
- 14 《民用建筑室内热湿环境评价标准》GB/T 50785
- 15 《城市夜景照明设计规范》JGJ/T 163
- 16 《建筑通风效果测试与评价标准》JGJ/T 309
- 17 《建筑地面工程防滑技术规程》JGJ/T 331
- 18 《居住建筑节能设计标准》DB37/5026
- 19 《绿色建筑设计规范》DB37/T 5043
- 20 《公共建筑节能设计标准》DB37/5155